会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • 散乱を利用した超局在顕微鏡法およびその関連装置
    • JP2021519448A
    • 2021-08-10
    • JP2020552880
    • 2019-03-26
    • クレストオプティクス エス.ピー.エー.CRESTOPTICS S.P.A.フォンダツィオーネ・イスティトゥート・イタリアーノ・ディ・テクノロジャFONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    • レオネッティ マルコアントナッチ ジュゼッペチェッカレッリ ライノ
    • G01N21/64G02B21/00
    • 本発明は、蛍光顕微鏡法であって、A. 第1の初期構成C 1 をもつ波面を有するコヒーレント励起光線(5)を備え、1つ以上の蛍光発光体を含む散乱サンプルを照らすことで、当該散乱サンプルに含まれる1つ以上の蛍光発光体を励起するステップと、B. 画素撮像ユニット(45)を介して、散乱サンプルの背景画像F 1 =F B に対応する第1の初期画像F 1 を取得し、スペックル粒子画像を得るステップと、C. 少なくとも1つの蛍光発光体の蛍光シグナルをもつ第1の初期画像F 1 の領域に属するN=1…M個の座標[x N ,y N ]を有し、それぞれが第1の初期強度I PN 1 をもつM個の目標ピクセルP N を選択するステップと、D. M個の目標ピクセルP N のそれぞれについて波面の第1の初期構成を最適化することで、第1の初期画像F 1 のスペックル粒子サイズを減少させ、目標ピクセルP N の最大強度に対応する蛍光シグナルの局所最大I PN max を有する散乱サンプルの最終画像F fin (I PN max )を取得するステップと、E. ステップBで取得されたバックグラウンドの第1の初期画像F B を、ステップDで取得された最終画像F fin (I PN max )から減算することで、M個の目標ピクセルP N のそれぞれについて、強度I PN SPECKLE で画素[x N ,y N ]に位置する1つのスペックル粒子から来る蛍光シグナルのみを有する画像F speckle(PN) をそれぞれ取得するステップと、F. 自由中心座標をもつガウス関数で、ステップEで得られた画像F speckle(PN) をフィッティングすることで、M個の目標ピクセルP N のそれぞれについて、xy平面での座標(X N ,Y N )と強度I N を得るステップと、G. M個の目標ピクセルP N のそれぞれについて、ステップFで得られた強度I N と、散乱サンプルのスペックル粒子の平均サイズSに等しいクビレをもち、座標(X N ,Y N )を中心とするガウス分布を含む画像F N を生成するステップと、H. M個の目標ピクセルP N のそれぞれについて、ステップGで得られたM個の画像F N を足し合わせてサンプルの最終画像を生成するステップと、を含む。 【選択図】図3
    • 6. 发明申请
    • CONFOCAL MICROSCOPY APPARATUS AND RELATED PROCESS FOR ACQUIRING AND PROCESSING IMAGES
    • US20180292634A1
    • 2018-10-11
    • US15764332
    • 2016-10-12
    • CRESTOPTICS S.p.A.
    • Vincenzo RICCOAndrea SANTINELLI
    • G02B21/00G02B21/36G06T3/40
    • Confocal microscopy apparatus, and related process, comprising: a structured light generating component configured to be illuminated with a basic light beam and to generate a structured light beam focused on a first plane; a spinning disk configured to receive said structured light beam and to transmit a resulting excitation beam to an optics of a microscope focused on a plane of a sample, wherein the spinning disk lies on a second plane and comprises a disk-shaped substrate composed of an optically transparent material, the substrate of the spinning disk comprising a planar first surface and an opposing planar second surface and a patterned mask disposed on one of the first surface and the second surface and comprising at least one sector provided with one or more continuous spiral slit apertures, wherein the patterned mask or an outer surface thereof is composed of a highly black material opaque to light; a housing configured to house on a third plane an acquisition sensor configured to detect a fluorescent beam emitted from said plane of the sample; a set of relay lenses configured to optically conjugate the first plane, the second plane and said plane of the sample to the third plane; optical means configured to transmit said structured light beam from the structured light generating component to said plane of the sample and said emitted fluorescent beam from said plane of the sample to said housing configured to house the acquisition sensor; and moving means configured to move the structured light generating component, so as to shift the structured light beam in the first plane, and the spinning disk in the second plane.
    • 8. 发明申请
    • SCATTERING-ASSISTED SUPER-LOCALIZATION MICROSCOPY METHOD AND RELATIVE APPARATUS
    • WO2019186393A1
    • 2019-10-03
    • PCT/IB2019/052442
    • 2019-03-26
    • CRESTOPTICS S.P.A.FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    • LEONETTI, MarcoANTONACCI, GiuseppeCECCARELLI, Raino
    • G01N21/64G02B21/00
    • Fluorescence microscopy method comprising the following steps: A. illuminating a scattering sample including one or more fluorescent emitters with a coherent excitation light beam (5) having a wavefront with a first initial configuration C 1 for exciting said one or more fluorescent emitters comprised in the scattering sample; B. acquiring a first initial image F 1 corresponding to a background image F 1 =F 8 of the scattering sample, through a pixel imaging unit (45), obtaining a speckle grain image; C. selecting M target pixels P N , with N = 1,…,M, of coordinates [X N , Z N ] belonging to an area of the first initial image F 1 having fluorescence signals of at least one fluorescent emitters, each one of the M target pixels P N having a first initial intensity I PN 1 ; D. optimising the first initial configuration of the wavefront for each one of the M target pixels P N , for decreasing the speckle grain size of the first initial image F 1 and obtaining a final image F fin (I PN max ) of the scattering sample with a local maximum I PN max of the fluorescence signal corresponding to a maximum intensity of the target pixels P N ; E. subtracting the first initial image F B of background, obtained at step B, from the final image F fin (I PN max ) , obtained at step D, for each one of the M target pixels P N , obtaining an image F speckle ( PN ) having only fluorescent signals coming from a speckle grain located at pixel [X N , Z N ] with intensity I PN speckle , for each one of the M target pixels P N ; F. fitting the image F speckle ( PN ) , obtained at step E, with a Gaussian function with free center coordinates, for each one of the M target pixels P N , thereby obtaining coordinates ( X N , Z N ) and intensity I N in a xy plane; G. generating an image F N containing a Gaussian distribution centered at coordinates ( X N , Z N ) and with intensity I N , obtained at step F, and with a waist equal to an average size S of speckle grain of the scattering sample, for each one of the M target pixels P N ; H. generating a final image of the sample by summing the M images F N obtained at step G, for each one of the M target pixels P N ;