会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Synchronizing a data driven interaction controller and a non-data driven interaction controller
    • 同步数据驱动的交互控制器和非数据驱动的交互控制器
    • US06259707B1
    • 2001-07-10
    • US09183158
    • 1998-10-30
    • Joseph Alexander Dara-AbramsSimon J. GibbsArunachalam BalaramanNeil David MatthewsJon Fairhurst
    • Joseph Alexander Dara-AbramsSimon J. GibbsArunachalam BalaramanNeil David MatthewsJon Fairhurst
    • H04H104
    • H04L12/2814H04L12/2805H04L12/2809H04L12/281H04L12/282H04L2012/2849H04L2012/285
    • A method and system for communicating state information for a target consumer electronic device in a home network to multiple controller devices, where the controller devices are each implementing a controller software element that conforms to a different protocol than the other. The target consumer electronic device is represented within the home network by a target software element. A first controller software element conforming to a data driven interaction (DDI) protocol accesses the target software element. A second controller software element conforming to a protocol different from the DDI protocol concurrently accesses the target software element. The first controller software element and the second controller software element cause a change in state of the consumer electronic device. The target software element notifies the first controller software element and the second controller software element of the state information for the target consumer electronic device. The target software element notifies the first controller software element according to the DDI protocol and notifies the second controller software element according to the protocol different from the DDI protocol. The first controller software element and the second controller software element use the state information to manage their respective user interfaces such that consistency is maintained between the user interfaces.
    • 一种用于将家庭网络中的目标消费电子设备的状态信息传送到多个控制器设备的方法和系统,其中控制器设备各自实现符合与另一个不同协议的控制器软件元件。 目标消费电子设备由目标软件元件在家庭网络内表示。 符合数据驱动交互(DDI)协议的第一个控制器软件元素访问目标软件元素。 符合不同于DDI协议的协议的第二个控制器软件元素同时访问目标软件元素。 第一控制器软件元件和第二控制器软件元件导致消费电子设备的状态改变。 目标软件单元向目标消费者电子设备的状态信息通知第一控制器软件元件和第二控制器软件元件。 目标软件单元根据DDI协议通知第一控制器软件元件,并根据不同于DDI协议的协议通知第二控制器软件元件。 第一控制器软件元件和第二控制器软件元件使用状态信息来管理其各自的用户界面,使得在用户界面之间保持一致性。
    • 2. 发明授权
    • Traffic monitoring system for determining vehicle dimensions, speed, and
class
    • 用于确定车辆尺寸,速度和等级的交通监控系统
    • US5528234A
    • 1996-06-18
    • US189761
    • 1994-02-01
    • Siva A. ManiArunachalam Balaraman
    • Siva A. ManiArunachalam Balaraman
    • G01S7/00G01S7/521G01S7/539G01S15/50G08G1/015G08G1/04
    • G08G1/015G01S15/50G01S7/539G08G1/04G01S7/003G01S7/521
    • A traffic monitoring system includes many monitoring nodes (10) distributed along many roads. A sonar ranging module (12) in each node continually measures the height of vehicles (19) crossing thereunder with repeated sonar pulses. A microcontroller (14) contains suitable instructions for estimating the speed of the vehicle by assigning a length to the vehicle based on its measured height, and dividing the length by the crossing time that the vehicle took to cross under the sonar module. The speed information from each node is transmitted to a central station (11) via a communication link (17). In a second embodiment, each node (10A) includes a pair of sonar modules (12A) spaced apart along a road. These measures the height of the vehicle, as well as the traversal time it takes to travel between both sonar modules. The microcontroller (14A) contains suitable instructions for dividing the modules' separation distance by the traversal time to accurately calculate the speed of the vehicle. The vehicle's length can be estimated by multiplying the calculated speed by the crossing time. The class of the vehicle can be estimated by looking its dimensions in a probability table (40) which relates vehicular dimensions with vehicle classes.
    • 交通监控系统包括沿许多道路分布的许多监控节点(10)。 每个节点中的声纳测距模块(12)连续测量与之​​相交的车辆(19)的高度,并重复声纳脉冲。 微控制器(14)包含用于通过基于其测量的高度向车辆分配长度并且将长度除以车辆在声纳模块下方交叉的交叉时间来包含用于估计车辆速度的合适指令。 来自每个节点的速度信息经由通信链路(17)发送到中心站(11)。 在第二实施例中,每个节点(10A)包括沿道路间隔开的一对声纳模块(12A)。 这些测量车辆的高度以及在两个声纳模块之间行驶所需的穿越时间。 微控制器(14A)包含合适的指令,用于将模块的间隔距离除以通过时间以精确地计算车辆的速度。 车辆的长度可以通过将计算的速度乘以交叉时间来估计。 可以通过将车辆尺寸与车辆等级相关联的概率表(40)中的尺寸来估计车辆的等级。