会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • A subsurface formation monitoring system and method
    • 系统和Verfahren zur Beobachtung von unterirdischen Formationen
    • EP2025863A1
    • 2009-02-18
    • EP07291004.5
    • 2007-08-09
    • Services Pétroliers SchlumbergerSchlumberger Technology B.V.Schlumberger Holdings LimitedPRAD Research and Development N.V.
    • Schmitt, BenoitChouzenoux, ChristianBabour, KamalBeguin, Paul
    • E21B47/12
    • E21B47/121
    • A subsurface formation monitoring system comprises:
      - a conductive piping structure 2 comprising either a conductive casing or a non conductive casing fitted with a conductive tubing, the conductive piping being positioned within a borehole BH extending into the subsurface formation GF,
      - a surface installed power and communication module 3, and
      - a downhole installed conductive casing or tubing sub 4A, 4B, 4C comprising at least one sensor 5, 15 mounted on the sub, a data communication module 6 for wireless communication of the sensor measurements to the surface installed power and communication module, and a powering means 7 for providing power to the data communication module 6 and the sensor 5, 15.
      The surface installed power and communication module 3 is coupled to the conductive piping 2 and to a grounded return electrode 9 coupled to the subsurface formation GF, and comprises an alternate current generator 10 so as to define an ingoing signal path along the conductive piping 2 and sub 4A, 4B, 4C, the ingoing signal flowing from the surface installed power and communication module 3 to the downhole installed sub 4A, 4B, 4C, the ingoing signal transmitting power from the alternate current generator 10 to the downhole installed conductive casing or tubing sub 4A, 4B, 4C. A return signal comprising the sensor measurements is transmitted through a return signal path ACL flowing from the downhole installed sub 4A, 4B, 4C to the surface installed power and communication module 3 into the subsurface formation GF around the borehole BH.
    • 地下地层监测系统包括: - 导电管道结构2,其包括导电壳体或装配有导电管的非导电壳体,所述导电管道位于延伸到地下地层GF内的钻孔BH内, - 表面安装功率 和通信模块3,以及 - 井下安装的导电套管或管子子4A,4B,4C,其包括安装在子上的至少一个传感器5,15;数据通信模块6,用于将传感器测量值与表面安装功率无线通信 和通信模块,以及用于向数据通信模块6和传感器5,15提供电力的供电装置7.表面安装的功率和通信模块3耦合到导电管道2和耦合到接地的返回电极9 地下形成GF,并且包括交流发电机10,以便限定沿着导电管道2a的进入信号路径 nd 4A,4B,4C,从表面安装的电源和通信模块3流入安装在4A,4B,4C的井下的进入信号,将来自交流发电机10的输入信号传输到井下安装的导电外壳或 管子4A,4B,4C。 包括传感器测量值的返回信号通过从井下安装的子4A,4B,4C流到表面安装的动力和通信模块3的返回信号路径ACL传送到围绕钻孔BH的地下地层GF中。
    • 6. 发明授权
    • DRILLING METHOD
    • 钻孔方法
    • EP1537291B1
    • 2007-07-18
    • EP03771142.1
    • 2003-07-16
    • SCHLUMBERGER TECHNOLOGY B.V.Services Pétroliers Schlumberger
    • HEAD, PhilipLURIE, Paul, George
    • E21B21/00E21B43/00
    • E21B43/00E21B21/00E21B41/0035E21B2023/008
    • A method of drilling a borehole from a selected location in an existing wellbore (1) penetrating subterranean earth formation having at least one hydrocarbon bearing zone (3) wherein the existing wellbore is provided with a casing (4) and a hydrocarbon fluid production conduit (6) is arranged in the existing wellbore in sealing relationship with the wall of the casing, the method comprising: passing a remotely controlled electrically operated drilling device (12) from the surface through the hydrocarbon fluid production conduit to the selected location in the existing wellbore; operating the drilling device such that cutting surfaces on the drilling device drill the borehole from the selected location in the existing wellbore thereby generating drill cuttings wherein during operation of the drilling device, a first stream of produced fluid flows directly to the surface through the hydrocarbon fluid production conduit and a second stream of produced fluid is pumped over the cutting surfaces of the drilling device via a remotely controlled electrically operated downhole pumping means and the drill cuttings are transported away from the drilling device entrained in the second stream of produced fluid.
    • 一种从穿过具有至少一个含烃区(3)的地下地层的现有井筒(1)中的选定位置钻出钻孔的方法,其中现有井筒具有套管(4)和烃流体产生导管( 所述方法包括:将远程控制的电动钻井装置(12)从地面通过所述碳氢化合物流体生产管道传送到所述现有井筒中的所述选定位置 ; 操作钻孔装置,使得钻孔装置上的切割表面从现有井眼中的选定位置钻出钻孔,从而产生钻屑,其中在钻孔装置的操作期间,第一产出流体流通过烃流体直接流到表面 第二生产流体流通过远程控制的电动操作的井下泵送装置泵送到钻井装置的切割表面上,并且将钻屑从夹带在第二生产流体流中的钻井装置运走。
    • 8. 发明公开
    • Turbine flow meter for measuring flow velocity and direction
    • Turbinendurch Flussmesser zur Messung derStrömungsgeschwindigkeitundStrömungsrichtung
    • EP1739396A1
    • 2007-01-03
    • EP05291509.7
    • 2005-06-29
    • SERVICES PETROLIERS SCHLUMBERGERSCHLUMBERGER TECHNOLOGY B.V.SCHLUMBERGER HOLDINGS LIMITEDPRAD Research and Development N.V.Schlumberger Oilfield Assistance Limited
    • Wu, XuKalb, FrederiqueChouzenoux, Christian
    • G01F1/10
    • G01F1/103G01P3/486G01P5/07G01P13/04
    • A device 1 for measuring a fluid flow FF velocity and direction comprises :
      - a pivotable means 2 adapted to rotate at a pivotable means rotation velocity and direction depending on the fluid flow velocity and direction when in contact with the fluid flow,
      - a modulator 3 coupled to the pivotable means and adapted to rotate in conjunction with the pivotable means,
      - a fiber optical arrangement for providing an incident beam IB to the modulator and for receiving a return beam RB from the modulator,
      - the incident beam IB comprising an incident signal, the return beam RB comprising a modulated signal, the modulator 3 modulating the incident signal so as to form the modulated signal depending on the pivotable means 2 rotation velocity and direction.
      The modulator 3 comprises an encoder 30 comprising at least a first angular sector 34, a second angular sector 35 and a third angular sector 36, each angular sector having a determined attenuation coefficient so that the modulated signal comprises at least a first portion 64, a second portion 65 and a third portion 66 for each complete rotation of the encoder 30. The device 1 further comprises a processing means 6 for determining the fluid flow FF velocity and direction based on at least the first portion 64, the second portion 65 and the third portion 66 of the modulated signal.
    • 用于测量流体流FF速度和方向的装置1包括: - 可枢转装置2,其适于在与流体流动接触时根据流体流动速度和方向以可枢转的装置旋转速度和方向旋转;调制器3 耦合到所述可枢转装置并且适于与所述可枢转装置一起旋转; - 光纤布置,用于向所述调制器提供入射光束1B并用于从所述调制器接收返回光束RB,所述入射光束IB包括入射信号 ,返回光束RB包括调制信号,调制器3调制入射信号,以便根据可枢转装置2的旋转速度和方向形成调制信号。 调制器3包括编码器30,其包括至少第一角扇区34,第二角扇区35和第三角扇区36,每个角扇区具有确定的衰减系数,使得调制信号至少包括第一部分64, 第二部分65和第三部分66,用于编码器30的每次完全旋转。装置1还包括处理装置6,用于基于至少第一部分64,第二部分65和第二部分65确定流体流FF速度和方向 调制信号的第三部分66。
    • 9. 发明公开
    • A method for electromagnetically measuring physical parameters of a pipe
    • 一种用于管道的物理参数的电磁测量方法
    • EP1717412A1
    • 2006-11-02
    • EP05290929.8
    • 2005-04-26
    • SERVICES PETROLIERS SCHLUMBERGERSCHLUMBERGER TECHNOLOGY B.V.SCHLUMBERGER HOLDINGS LIMITEDPRAD Research and Development N.V.Schlumberger Oilfield Assistance Limited
    • Legendre, Emmanuel, Schlumberger Product CenterBrill, Thilo
    • E21B47/08
    • E21B47/082G01B7/13G01N27/9046
    • The method electromagnetically measures a pipe inner diameter ID and a pipe ratio of magnetic permeability to electrical conductivity µ 2 /σ 2 by means of a measuring arrangement 1 comprising a transmitter coil 2 and a receiver coil 3, both coils being coaxial to and longitudinally spaced from each other, the measuring arrangement 1 being adapted to be positioned into the pipe CS and displaced through the pipe. The method comprises the steps of:
      a1) exciting the transmitter coil 2 by means of a transmitter current I i , the transmitter current having a first excitation frequency f 1 ,
      a2) measuring a receiver voltage V i at the receiver coil 3,
      a3) determining a transimpedance V i /l i between the transmitter coil 2 and the receiver coil 3 based on the transmitter current I i and the receiver voltage V i , and determining a measurement ratio M i based on said transimpedance,
      b) repeating the excitation step a1), the measuring step a2), the transimpedance and the measurement ratio determination step a3) for at least a second excitation frequency f 2 so as to define a measurement ratio vector [M 1 , M 2 , ... M n ],
      c) calculating a prediction function vector [G 1 , G 2 , ... G n ] based on the first and at least the second excitation frequency, a plurality of potential pipe ratio of magnetic permeability to electrical conductivity and a plurality of potential pipe inner diameter ID, and
      d) applying a minimizing algorithm onto the measurement ratio vector [M 1 , M 2 , ... M n ] and the prediction function vector [G 1 , G 2 , ... G n ] and determining the pipe inner diameter and the pipe ratio of magnetic permeability to electrical conductivity corresponding to a maximum solution of the algorithm.
    • 该方法电磁测量的管内径ID和电导率μ2 / A 2由一个测量装置1的方式磁导率的管比包括发射器线圈2和接收器线圈3,这两个线圈是同轴的并纵向隔开 从海誓山盟,测量装置1个感angepasst被定位到管道CS并通过管道移动。 该方法包括以下步骤:由发送器电流Ii的平均值A1)激励所述发送器线圈2中,具有第一激励频率f1发射器电流,A2)测量接收机电压Vi在接收器线圈3,a3)的 确定所述发射器线圈2和基于发射器的电流I 1和接收器电压V i中的接收器线圈3,并且确定我基于所述互阻抗的测量比率M之间跨阻VI /利,b)重复该激发步骤a1 ),测量步骤a2)中,互阻抗和测量比率确定步骤a3),用于至少一个第二激励频率f 2,从而限定一个测量比向量[M 1,M 2,...,M N],C )基于所述第一和至少第二激发频率,磁导率,以导电性潜在管比和潜在的管内的多个的多个预测函数向量[G 1,G 2,... G N] 直径ID,以及d)应用程序 躺在最小化算法到测量比向量[M 1,M 2,...,M n]和预测函数向量[G 1,G 2,... G N]和确定管子内径和管比 的磁导率的导电性对应于算法的最大溶液。