会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • Verfahren und Vorrichtung zum Erkennen von Objekten
    • EP2187351A1
    • 2010-05-19
    • EP09013865.2
    • 2009-11-04
    • Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    • Kuleschow, AndreasSpinnler, KlausMünzenmayer, Christian
    • G06T7/00
    • G06T7/155G06T7/11G06T7/136G06T7/187G06T2207/20012G06T2207/30108
    • Ein Verfahren zum Erkennen eines Objekts auf einem mittels Bildpunkten darstellbaren Bild umfasst die Schritte: "Bestimmen eines ersten und eines zweiten adaptiven Schwellwertes für Bildpunkte des Bildes, die von einer mittleren Intensität in einer Region um den jeweiligen Bildpunkt abhängen", "Ermitteln von Teilobjekten aus Bildpunkten einer ersten Art, die basierend auf einem Vergleich mit dem ersten adaptiven Schwellwert erhalten werden", "Ermitteln von Bildpunkten einer zweiten Art, die basierend auf einem Vergleich mit dem zweiten adaptiven Schwellwert erhalten werden" und "Verbinden eines ersten und eines zweiten der Teilobjekte mittels Bildpunkten der zweiten Art zu einem erweiterten Teilobjekt, wenn ein Mindestabstand zwischen dem ersten und dem zweiten der Teilobjekte vorhanden ist, wobei das zu erkennende Objekt durch eine Summe der Teilobjekte aus Bildpunkten der ersten Art und/oder der erhaltenen, erweiterten Teilobjekte beschreibbar ist".
    • 该方法涉及确定划痕对象的图像(200)的图像元素的两个自适应阈值。 基于与阈值之一的比较来确定一种类型的图像元素的部分对象,并且基于与另一阈值的比较来确定另一种类型的图像元素。 两个部分对象通过后一类型的图像元素组合到扩展的部分对象。 要检测的部分对象由所获取的扩展部分对象的部分对象和/或总和的和来描述。 独立权利要求还包括以下内容:(1)一种计算机程序,包括一组指令,用于执行检测由图像元素表示的图像上的对象的方法(2)用于检测由图像表示的图像上的对象的装置 元件,包括确定器。
    • 3. 发明公开
    • APPARATUS AND METHOD FOR DETECTING A ROTATION
    • 用于检测旋转的装置和方法
    • EP2035776A1
    • 2009-03-18
    • EP07724834.2
    • 2007-05-03
    • Infineon Technologies AG
    • AIGNER, Robert
    • G01C19/56
    • G01C19/5698
    • A rotation sensor has a substrate (112) with a first surface (114) and a second surface (116). A shear-wave transparent mirror (106) is arranged on the first surface (114) of the substrate (112), and a shear-wave isolator (104) is arranged above the shear-wave transparent mirror (106), the shear-wave transparent mirror (106) and the shear-wave isolator (104) being arranged separated from each other to define a Coriolis zone (124) there between. A bulk-acoustic-wave resonator (102) is arranged above the shear-wave isolator (104), and a shear-wave detector (108) is arranged on the substrate (112) in a direction, in which a shear-wave (128) generated by the bulk-acoustic-wave resonator (102) upon rotation propagates.
    • 旋转传感器具有具有第一表面(114)和第二表面(116)的衬底(112)。 在基板(112)的第一表面(114)上设置有剪切波透镜(106),在剪切波透镜(106)的上方设置有剪切波隔离器(104) (106)和剪切波隔离器(104)彼此分开布置以在其间限定科里奥利区(124)。 在剪切波隔离器(104)的上方配置体声波谐振器(102),在该基板(112)上,在剪切波((104))的方向上配置剪切波检测器(108) 128)在旋转传播时由体声波谐振器(102)产生。
    • 7. 发明公开
    • KALIBRIERBARER MEHRDIMENSIONALER MAGNETISCHER PUNKTSENSOR
    • 校准多维磁传感器POINT
    • EP2174153A1
    • 2010-04-14
    • EP08785622.5
    • 2008-08-19
    • Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    • HOHE, Hans-PeterHACKNER, MichaelSTAHL-OFFERGELD, Markus
    • G01R33/07
    • G01R33/07G01R33/0017G01R33/0035G01R33/075
    • A calibratable magnetic field sensor (100) for detecting a first spatial component and a second spatial component (By, Bz; Bx, By) of a magnetic field at a reference point (101), wherein the magnetic field has a first measurement field component and a second measurement field component (BMy, BMz; BMX, BMy) and/or a first calibration field component and a second calibration field component (BKy, BKz; BRX, BKy). The magnetic field sensor (100) comprises a first sensor element arrangement (104; 106), which has at least one first sensor element and one second sensor element (104a, 104b; 106a, 106b), for detecting the first magnetic field component (By; Bx), which has a first measurement field component (BMy; BMX) and/or a first calibration field component (BKy; BRX), with respect to a first spatial axis (y; x) at the reference point (101). The magnetic field sensor (100) also comprises a second sensor element arrangement (102; 104) for detecting the second magnetic field component (Bz; By), which has a second measurement field component (BMz; BMy) and/or a second calibration field component (BKz; BKy), with respect to a second spatial axis (z; y) at the reference point (101). The magnetic field sensor (100) also has an exciter line (108) which is arranged with respect to the first sensor element arrangement (104; 106) in such a manner that, when a predefined current (Ikl) is injected into the exciter line (108), a pair of different predefined calibration field components, (BKya; BKxa) in the first sensor element (104a; 106a) and (BKyb; BKxb) in the second sensor element (104b; 106b), is produced in the first sensor element arrangement (104; 106) with respect to the first spatial axis (y; x), wherein the two spatial axes (y, z; x, z; x, y) run along linearly independent position vectors.
    • 10. 发明公开
    • IM MESSBETRIEB KALIBRIERBARER MAGNETISCHER 3D-PUNKTSENSOR
    • EP2049910A2
    • 2009-04-22
    • EP07764888.9
    • 2007-06-27
    • Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.
    • HOHE, Hans-PeterHACKNER, MichaelSTAHL-OFFERGELD, Markus
    • G01R33/02G01R33/07
    • G01R33/0206G01R15/202G01R33/0017G01R33/0035G01R33/07G01R33/075
    • A magnetic field sensor (100) capable of being calibrated during measurement operation for detecting a first, second and third spatial component Bz, By and Bx of a magnetic field at a reference point (101), wherein the magnetic field has a first, second and third measurement field component BMz, BMy, BMx and a first, second and third calibration field component BKz, BKy and BKx. The magnetic field sensor (100) comprises a first sensor element arrangement (102) for detecting the first magnetic field component Bz, which has a first measurement field component BMz and a first calibration field component BKz, with respect to a first spatial axis z at the reference point (101), a second sensor element arrangement (104) for detecting the second magnetic field component By, which has a second measurement field component BMy and a second calibration field component BKy, with respect to a second spatial axis y at the reference point (101) and a third sensor element arrangement (106) for detecting the third magnetic field component Bx, which has a third measurement field component BMx and a third calibration field component BKx, with respect to a third spatial axis x at the reference point (101). The magnetic field sensor (100) also comprises a field line, which is arranged with respect to the first (102), second (104) and third sensor element arrangement (106) in such a way that, when a predetermined current is injected into the field line (108), a first predetermined calibration field component BKz with respect to the first spatial axis z in the first sensor element arrangement is produced, a second predetermined calibration field component BKy with respect to the second spatial axis y in the second sensor element arrangement is produced and a third predetermined calibration field component BKx with respect to the third spatial axis x in the third sensor element arrangement is produced, wherein the three spatial axes z, y and x run along linearly independent position vectors.
    • 一种能够在测量操作期间被校准的磁场传感器(100),用于检测参考点(101)处的磁场的第一,第二和第三空间分量Bz,By和Bx,其中该磁场具有第一,第二 和第三测量场分量BMz,BMy,BMx以及第一,第二和第三校准场分量BKz,BKy和BKx。 所述磁场传感器(100)包括用于检测第一磁场分量Bz的第一传感器元件布置(102),所述第一磁场分量Bz具有第一测量场分量BMz和第一校准场分量BKz,相对于第一空间轴z在 所述参考点(101)包括用于检测所述第二磁场分量By的第二传感器元件布置(104),所述第二磁场分量具有第二测量场分量BMy和第二校准场分量BKy,所述第二空间轴相对于所述第二空间轴y 参考点(101)和第三传感器元件布置(106),用于检测具有第三测量场分量BMx和第三校准场分量BKx的第三磁场分量Bx,所述第三磁场分量Bx相对于参考点处的第三空间轴x 点(101)。 磁场传感器(100)还包括场线,该场线相对于第一(102),第二(104)和第三传感器元件布置(106)以这样的方式布置,即,当预定电流被注入到 在第一传感器元件布置中产生相对于第一空间轴z的第一预定校准场分量BKz,相对于第二传感器中的第二空间轴y的第二预定校准场分量BKy 产生相对于第三传感器元件布置中的第三空间轴x的第三预定校准场分量BKx,其中三个空间轴z,y和x沿着线性独立的位置向量运行。