会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • BIOMATERIAL COMPRISING POLY(TRIMETHYLENE CARBONATE-CO-E-CAPROLACTONE) FOR PROMOTING AXONALL GROWTH AND NEURONAL REGENERATION
    • 包含聚(三亚甲基碳酸酯 - 碳酸钙)的生物材料用于促进轴向生长和神经再生
    • WO2014116132A1
    • 2014-07-31
    • PCT/PT2014/000006
    • 2014-01-28
    • INEB - INSTITUTO NACIONAL DE ENGENHARIA BIOMÉDICA
    • PÊGO, Ana PaulaROCHA, Daniela
    • A61K31/765A61L27/58A61P25/00A61K31/198
    • A61K31/765A61K31/198A61L27/18A61L27/34A61L27/54A61L31/06A61L31/10A61L31/16A61L2300/252A61L2300/412A61L2430/32Y02A50/465C08L67/04C08L89/00
    • Mammalian central nervous system (CNS) neurons do not regenerate after injury due to the inhibitory environment formed by the glial scar, largely constituted by myelin debris. The use of biomaterials to bridge the lesion area and the creation of an environment favoring axonal regeneration is an appealing approach, currently under investigation. This work aimed at assessing the suitability of three candidate polymers - poly(?-caprolactone), poly(trimethylene carbonate-co- ?-caprolactone) (P(TMC-CL)) (11:89 mol%) and poly(trimethylene carbonate) - with the final goal of using these materials in medicine, namely in the development of conduits to promote spinal cord regeneration. Cortical neurons cultured on P(TMC-CL) in the presence of myelin were able to tame myelin inhibition in comparison with the control condition (glass substrate). This effect was found to be mediated by the glycogen synthase kinase 3p (GSK3p) signaling pathway with impact on the collapsin response mediator protein 4 (CRMP4), suggesting that nanomechanical properties were implicated in this process. The obtained results indicate P(TMC-CL) as a promising material for CNS regenerative applications as it promotes axonal growth, taming myelin inhibition.
    • 哺乳动物中枢神经系统(CNS)神经元由于由髓鞘碎片主要构成的胶质瘢痕形成的抑制环境,不能在损伤后再生。 使用生物材料桥接病变区域和创造有利于轴突再生的环境是一种吸引人的方法,目前正在调查中。 这项工作旨在评估三种候选聚合物 - 聚(ε-己内酯),聚(三亚甲基碳酸酯 - 共 - 己内酯)(P(TMC-CL))(11:89摩尔%)和聚(三亚甲基碳酸酯 ) - 最终目标是在医学中使用这些材料,即在开发导管以促进脊髓再生。 与对照条件(玻璃底物)相比,在髓磷脂存在下在P(TMC-CL)上培养的皮质神经元能够驯化髓磷脂抑制。 发现这种作用是由糖原合成酶激酶3p(GSK3p)信号通路介导的,其对皱缩蛋白反应介质蛋白4(CRMP4)具有影响,表明纳米机械性质参与了该过程。 获得的结果表明,P(TMC-CL)作为CNS再生应用的有希望的材料,因为它促进轴突生长,驯化髓鞘抑制。