会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 82. 发明授权
    • Light acquisition sheet and rod, and light receiving device and light emitting device each using the light acquisition sheet or rod
    • 光采集片和棒,以及各自使用光采集片或棒的光接收装置和发光装置
    • US09188717B2
    • 2015-11-17
    • US13877362
    • 2011-09-28
    • Seiji Nishiwaki
    • Seiji Nishiwaki
    • G02B6/34G02B5/18F21V5/02H01L31/054F21V8/00
    • G02B5/1814F21V5/02G02B6/0028G02B6/0036G02B6/0058H01L31/0543Y02E10/52
    • A light-trapping sheet of the present invention includes: a light-transmitting sheet 2 having first and second principal surfaces; and a plurality of light-coupling structures 3 arranged in an inner portion of the light-transmitting sheet at a first distance or more and a second distance or more from the first and second principal surfaces, respectively, wherein: each of the plurality of light-coupling structures 3 includes a first light-transmitting layer, a second light-transmitting layer, and a third light-transmitting layer arranged therebetween; a refractive index of the first and second light-transmitting layers is smaller than a refractive index of the light-transmitting sheet 2; a refractive index of the third light-transmitting layer is larger than the refractive index of the first and second light-transmitting layers; and the third light-transmitting layer has a diffraction grating parallel to the first and second principal surfaces of the light-transmitting sheet.
    • 本发明的遮光片包括:具有第一和第二主表面的透光片2; 以及多个光耦合结构3,其分别布置在所述透光片的内部,其距离所述第一和第二主表面分别具有第一距离或更多且第二距离或更远,其中:所述多个光 耦合结构3包括第一透光层,第二透光层和布置在其间的第三透光层; 第一透光层和第二透光层的折射率小于透光性片材2的折射率; 第三透光层的折射率大于第一透光层和第二透光层的折射率; 并且第三透光层具有与透光片的第一和第二主表面平行的衍射光栅。
    • 84. 发明授权
    • Sheet, light emitting device, and method for producing the sheet
    • 片材,发光装置和片材的制造方法
    • US08491160B2
    • 2013-07-23
    • US12995224
    • 2010-04-30
    • Seiji NishiwakiMasa-aki SuzukiShin-ichi WakabayashiJyunpei MatsuzakiTatsuya Nakamura
    • Seiji NishiwakiMasa-aki SuzukiShin-ichi WakabayashiJyunpei MatsuzakiTatsuya Nakamura
    • F21V14/00F21V11/00
    • G02B5/0278G02B5/0252H01L51/5275Y10T428/24479
    • A transparent sheet usable in the state where one of surfaces thereof is adjacent to a light emitting body, wherein the other surface of the sheet is divided into a plurality of tiny areas δ having such a size that a maximum circle among circles inscribed thereto has a diameter of 0.5 μm or greater and 3 μm or less with no gap; the tiny areas δ include a plurality of tiny areas δ1 randomly selected from the plurality of tiny areas δ, and the remaining plurality of tiny areas δ2; the tiny areas δ1 each include an area δ1a along a border with the corresponding tiny area δ2, and the remaining area δ1b; the tiny areas δ2 each include an area δ2a along a border with the corresponding tiny area δ1, and the remaining area δ2b; the height of the tiny areas δ1b is d/2; the height of the tiny areas δ1a is between zero to d/2; the depth of the tiny areas δ2a is d/2; the depth of the tiny areas δ2b is between zero to d/2; and d is in the range of 0.2 μm or greater and 3.0 μm or less.
    • 在其一个表面与发光体相邻的状态下可以使用的透明片,其中片的另一个表面被划分成多个微小区域delta,其尺寸使其内嵌有圆的最大圆具有 直径为0.5μm以上且3μm以下,无间隙; 微小区域delta包括从多个微小区域delta中随机选择的多个微小区域delta1,以及剩余的多个微小区域delta2; 微小区域delta1各自包括沿着与相应的微小区域delta2的边界的区域delta1a,剩余的区域delta1b; 微小区域delta2各自包括沿着与相应的微小区域delta1的边界的区域delta2a,剩余区域delta2b; 微小区域delta1b的高度为d / 2; 微小区域delta1a的高度在0到d / 2之间; 微小区域delta2a的深度为d / 2; 微小区域delta2b的深度在0到d / 2之间; d在0.2μm以上且3.0μm以下的范围。
    • 87. 发明申请
    • DIFFRACTION GRATING LENS AND IMAGE CAPTURE APPARATUS USING THE SAME
    • DIFFRACTION GRATING LENS AND IMAGE CAPTATUS US THE SAME
    • US20120113518A1
    • 2012-05-10
    • US13126591
    • 2010-10-26
    • Takamasa AndoSeiji NishiwakiTsuguhiro Korenaga
    • Takamasa AndoSeiji NishiwakiTsuguhiro Korenaga
    • G02B5/18
    • G02B5/1842G02B5/1871G02B13/003G02B27/0037G02B27/4205
    • A diffraction grating lens of the present invention includes a lens base 51 having a surface 51b obtained by providing a diffraction grating 52 on a base shape. The diffraction grating 52 includes a plurality of zones 61A and 61B and a plurality of first diffraction steps 65A and second diffraction steps 65B located between the plurality of zones; the lens base is made of a first material whose refractive index is n1(λ) at a working wavelength λ; and the first diffraction steps 65A and the second diffraction steps 65B have substantially the same height d. The height d satisfies Expression (1) below, where m denotes a diffraction order. A first surface 66A on which tips 63A of the first diffraction steps 65A are located and a second surface 66B on which tips 63B of the second diffraction steps 65B are located are at different positions from each other on an optical axis 53. d = m · λ n 1  ( λ ) - 1 ( 1 )
    • 本发明的衍射光栅透镜包括透镜基座51,透镜基座51具有通过提供基底形状的衍射光栅52而获得的表面51b。 衍射光栅52包括位于多个区之间的多个区61A和61B以及多个第一衍射级65A和第二衍射级65B; 透镜基座由工作波长λ的折射率为n1(λ)的第一材料制成; 并且第一衍射级65A和第二衍射级65B具有基本上相同的高度d。 高度d满足下面的式(1),其中m表示衍射级。 第一衍射台阶65A的尖端63A位于其上的第一表面66A和第二衍射台65B的尖端63B位于其上的第二表面66B在光轴53上彼此不同位置。d = m· λn 1(λ)-1(1)
    • 88. 发明申请
    • SHEET AND LIGHT-EMITTING DEVICE
    • 薄片和发光装置
    • US20120063145A1
    • 2012-03-15
    • US13319740
    • 2010-04-27
    • Jyunpei MatsuzakiShin-ichi WakabayashiSeiji NishiwakiTatsuya Nakamura
    • Jyunpei MatsuzakiShin-ichi WakabayashiSeiji NishiwakiTatsuya Nakamura
    • F21V9/00B32B3/00
    • G02B5/265H01L51/5268
    • A transparent sheet for use with a light emitting body with one of surfaces of the transparent sheet being adjacent to the light emitting body, wherein the other surface of the sheet is divided into a plurality of minute regions δ, a largest inscribed circle of the minute regions δ having a diameter from 0.2 μm to 1.5 μm, each of the minute regions δ being adjoined by and surrounded by two or more other ones of the plurality of minute regions δ, the plurality of minute regions δ include a plurality of minute regions δb which are randomly selected from the plurality of minute regions δ so as to constitute 40% to 98% of the minute regions δ and a plurality of minute regions δa which constitute the remaining portion of the minute regions δ, the minute regions δa are provided with a first tiny element which has thickness d and effective refractive index na, and the minute regions δb are provided with a second tiny element which has thickness d and effective refractive index nb, nb being greater than na.
    • 一种与发光体一起使用的透明片,透明片的一个表面与发光体相邻,其中片的另一个表面被分成多个微小的区域δ,分钟的最大内接圆 区域δ的直径为0.2μm〜1.5μm,每个微小区域δ与多个微小区域δ中的两个以上的两个以上的区域相邻并包围,多个微小区域δ包括多个微小区域δb 其从多个微小区域δ中随机选择,以构成微小区域δ的40%至98%和构成微小区域δ的剩余部分的多个微小区域δa,微小区域δa设置有 具有厚度d和有效折射率na的第一微小元件,微小区域δb设置有具有厚度d和有效折射率n的第二微小元件 b,nb大于na。
    • 89. 发明授权
    • Imaging photodetection device
    • 成像光电检测装置
    • US08076745B2
    • 2011-12-13
    • US12440195
    • 2008-07-22
    • Seiji Nishiwaki
    • Seiji Nishiwaki
    • H01L31/0203
    • H01L27/14627H01L27/14621H01L27/14629H04N9/045
    • An imaging photodetection device includes a plurality of photodetectors (6) arrayed on a substrate (5) one-dimensionally or two-dimensionally, a low refractive index transparent layer (12) formed above the plural photodetectors, and a plurality of columnar or plate-like high refractive index transparent sections (13) embedded in the low refractive index transparent layer along the array direction of the plural photodetectors. At least two of the photodetectors correspond to one of the high refractive index transparent sections. Light entering the low refractive index transparent layer and the high refractive index transparent sections passes therethrough to be separated into a 0th-order diffracted light, a 1st-order diffracted light and a −1st-order diffracted light by a phase shift occurring on the wavefront. Thereby, improvement in the efficiency for light utilization and pixel densification can be realized.
    • 成像光电检测装置包括:一维或二维排列在基板(5)上的多个光电检测器(6),形成在多个光电检测器上方的低折射率透明层(12),以及多个柱状或板状 像多个光电检测器的阵列方向嵌入在低折射率透明层中的高折射率透明部分(13)。 至少两个光电检测器对应于高折射率透明部分中的一个。 进入低折射率透明层和高折射率透明部分的光通过其中,以分离为0级衍射光,1级衍射光和1级衍射光通过发生在波前的相移 。 由此,可以实现光利用效率和像素致密化的提高。