会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 86. 发明授权
    • User interface for polyp annotation, segmentation, and measurement in 3D computed tomography colonography
    • 用于三维计算机断层扫描结构中息肉注解,分割和测量的用户界面
    • US08126244B2
    • 2012-02-28
    • US12231771
    • 2008-09-05
    • Le LuAdrian BarbuMatthias WolfSarang LakareLuca BogoniMarcos SalganicoffDorin Comaniciu
    • Le LuAdrian BarbuMatthias WolfSarang LakareLuca BogoniMarcos SalganicoffDorin Comaniciu
    • G06K9/34
    • G16H40/63G06F19/00G06T7/0012G06T7/12G06T2200/24G06T2207/10072G06T2207/20092G06T2207/30032
    • A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.
    • 公开了一种用于在计算机断层造影(CTC)体积中提供用于息肉注释,分割和测量的用户界面的方法和系统。 界面在CTC体积中接收初始息肉位置,并根据初始息肉位置自动分段息肉。 为了分割息肉,使用训练有素的3D点检测器在CTC体积中检测息肉末端。 然后将局部极坐标系拟合到CTC体积中的结肠表面,其中原点在检测到的息肉末端。 使用训练有素的3D框,在局部极坐标系的每个轴上检测Polyp内部体素和息肉外部体素。 基于检测到的息肉内部体素和息肉外部体素,通过使用训练有素的分类器进行升压1D曲线解析,在局部极坐标系的每个轴上检测边界体素。 这导致分段息肉边界。 分段息肉显示在用户界面中,用户可以使用界面修改分段息肉边界。 界面可以在三维中测量分段息肉的大小。 用户还可以在CTC卷中使用界面进行息肉注释。
    • 89. 发明授权
    • Method and system for detection and registration of 3D objects using incremental parameter learning
    • 使用增量参数学习检测和注册3D对象的方法和系统
    • US08068654B2
    • 2011-11-29
    • US12012386
    • 2008-02-01
    • Adrian BarbuLe LuLuca BogoniMarcos SalganicoffDorin Comaniciu
    • Adrian BarbuLe LuLuca BogoniMarcos SalganicoffDorin Comaniciu
    • G06K9/00G06T15/00
    • G06K9/32G06K9/00201G06K9/6256G06K2209/051
    • A method and system for detecting 3D objects in images is disclosed. In particular, a method and system for Ileo-Cecal Valve detection in 3D computed tomography (CT) images using incremental parameter learning and ICV specific prior learning is disclosed. First, second, and third classifiers are sequentially trained to detect candidates for position, scale, and orientation parameters of a box that bounds an object in 3D image. In the training of each sequential classifier, new training samples are generated by scanning the object's configuration parameters in the current learning projected subspace (position, scale, orientation), based on detected candidates resulting from the previous training step. This allows simultaneous detection and registration of a 3D object with full 9 degrees of freedom. ICV specific prior learning can be used to detect candidate voxels for an orifice of the ICV and to detect initial ICV box candidates using a constrained orientation alignment at each candidate voxel.
    • 公开了一种用于检测图像中的3D物体的方法和系统。 特别地,公开了使用增量参数学习和ICV特有的先前学习的3D计算机断层摄影(CT)图像中Ileo-Cecal Valve检测的方法和系统。 顺序训练第一,第二和第三分类器以检测在3D图像中界定对象的框的位置,缩放和取向参数的候选。 在每个顺序分类器的训练中,基于从先前的训练步骤得到的检测到的候选,通过在当前学习投影子空间(位置,比例,方向)中扫描对象的配置参数来生成新的训练样本。 这允许同时检测和注册具有全9自由度的3D对象。 ICV具体的先验学习可用于检测ICV孔口的候选体素,并使用每个候选体素上的约束取向对齐来检测初始ICV盒候选。