会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 73. 发明专利
    • Image processing apparatus, its method, and its control method
    • 图像处理设备,其方法及其控制方法
    • JP2006155380A
    • 2006-06-15
    • JP2004347235
    • 2004-11-30
    • Canon Incキヤノン株式会社
    • SATOU MINEKO
    • G06F17/30G06T7/00H04N1/00
    • G06K9/2063G06F17/30271G06K9/00456G06K9/6828G06K2209/01H04N1/2179H04N1/32133H04N1/4413H04N1/4433H04N2201/3249H04N2201/3295
    • PROBLEM TO BE SOLVED: To address the fact that information digitization has made it easier to share and make use of information over a wide range, making it very important to manage electronic documents and prints of electronic documents. SOLUTION: After a conference is ended, a participant causes an MFP to read a document image in a distributed material (S2101). The MFP references information in a storage part to search for a data file that matches the read document image (S2105), and deletes the detected data file (S2108). If the number of pages for the read image is insufficient (S2102, S2103) or if the data file cannot be detected or if part of the read document image is lacking (S2106, S2107), an alarm is issued. When notification that collection has ended is received (S2109), the MFP references information in the storage part to determine whether or not all the data files related to the conference have been deleted (S2110); if there are data files yet to be deleted and if these data files have been printed (S2111), an alarm is issued (S2113). COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:为了解决信息数字化使得更广泛地分享和使用信息的事实,使得管理电子文档和电子文档的打印非常重要。

      解决方案:会议结束后,参与者使MFP以分布式资料读取文档图像(S2101)。 MFP参照存储部中的信息来搜索与读取的文档图像相匹配的数据文件(S2105),并删除检测到的数据文件(S2108)。 如果读取图像的页数不足(S2102,S2103),或者如果无法检测到数据文件或者部分读取的文档图像缺少(S2106,S2107),则发出报警。 当接收到收集结束的通知(S2109)时,MFP参考存储部分中的信息,以确定与会议相关的所有数据文件是否已被删除(S2110); 如果有数据文件尚未被删除,并且如果这些数据文件已被打印(S2111),则发出报警(S2113)。 版权所有(C)2006,JPO&NCIPI

    • 80. 发明授权
    • Font recognition and font similarity learning using a deep neural network
    • 使用深层神经网络的字体识别和字体相似性学习
    • US09501724B1
    • 2016-11-22
    • US14734466
    • 2015-06-09
    • ADOBE SYSTEMS INCORPORATED
    • Jianchao YangZhangyang WangJonathan BrandtHailin JinElya ShechtmanAseem Omprakash Agarwala
    • G06K9/00G06K9/36G06K9/66G06K9/62G06K9/68G06T3/40
    • G06T3/40G06K9/6255G06K9/6828
    • A convolutional neural network (CNN) is trained for font recognition and font similarity learning. In a training phase, text images with font labels are synthesized by introducing variances to minimize the gap between the training images and real-world text images. Training images are generated and input into the CNN. The output is fed into an N-way softmax function dependent on the number of fonts the CNN is being trained on, producing a distribution of classified text images over N class labels. In a testing phase, each test image is normalized in height and squeezed in aspect ratio resulting in a plurality of test patches. The CNN averages the probabilities of each test patch belonging to a set of fonts to obtain a classification. Feature representations may be extracted and utilized to define font similarity between fonts, which may be utilized in font suggestion, font browsing, or font recognition applications.
    • 对卷积神经网络(CNN)进行字体识别和字体相似学习。 在训练阶段,通过引入差异来合成具有字体标签的文本图像,以最小化训练图像与真实世界文本图像之间的差距。 生成训练图像并将其输入到CNN中。 根据CNN正在训练的字体数量,输出被输入到N-way softmax函数中,产生N类标签上分类文本图像的分布。 在测试阶段,每个测试图像的高度被标准化,并以纵横比挤压,从而产生多个测试贴片。 CNN对属于一组字体的每个测试补丁的概率进行平均,以获得分类。 可以提取和利用特征表示来定义可以在字体建议,字体浏览或字体识别应用中使用的字体之间的字体相似性。