会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 74. 发明授权
    • Semiconductor device
    • 半导体器件
    • US08319274B2
    • 2012-11-27
    • US11829248
    • 2007-07-27
    • Digh HisamotoItaru YanagiYasuhiro ShimamotoToshiyuki MineYutaka Okuyama
    • Digh HisamotoItaru YanagiYasuhiro ShimamotoToshiyuki MineYutaka Okuyama
    • H01L29/792
    • H01L29/792G11C16/0425G11C16/10H01L27/115H01L27/11568H01L29/66833
    • A gate dielectric functioning as a charge-trapping layer of a non-volatile memory cell with a structure of an insulator gate field effect transistor is formed by laminating a first insulator formed of a silicon oxide film, a second insulator formed of a silicon nitride film, a third insulator formed of a silicon nitride film containing oxygen, and a fourth insulator formed of a silicon oxide film in this order on a main surface of a semiconductor substrate. Holes are injected into the charge-trapping layer from a gate electrode side. Accordingly, since the operations can be achieved without the penetration of the holes through the interface in contact to the channel and the first insulator, the deterioration in rewriting endurance and the charge-trapping characteristics due to the deterioration of the first insulator does not occur, and highly efficient rewriting (writing and erasing) characteristics and stable charge-trapping characteristics can be achieved.
    • 作为具有绝缘体栅极场效应晶体管的结构的非易失性存储单元的电荷捕获层的栅极介质通过层叠由氧化硅膜形成的第一绝缘体,由氮化硅膜形成的第二绝缘体 由半导体衬底的主表面依次由含有氧的氮化硅膜构成的第三绝缘体和由氧化硅膜形成的第四绝缘体构成。 孔从栅电极侧注入电荷捕获层。 因此,由于可以在没有孔穿过与沟道和第一绝缘体接触的界面的情况下实现操作,所以不会发生由于第一绝缘体的劣化导致的重写耐久性和电荷捕获特性的劣化, 并且可以实现高效的重写(写入和擦除)特性和稳定的电荷捕获特性。
    • 80. 发明申请
    • METHOD FOR SEMICONDUCTOR CIRCUIT
    • 半导体电路方法
    • US20090132974A1
    • 2009-05-21
    • US12024107
    • 2008-01-31
    • Hiroyuki YOSHIMOTONobuyuki SugiiShinichi SaitoDigh Hisamoto
    • Hiroyuki YOSHIMOTONobuyuki SugiiShinichi SaitoDigh Hisamoto
    • G06F17/50
    • G06F17/5036
    • Capacity-gate voltage characteristics of a field-effect transistor having plural gates are measured against a voltage change in each one of the gates for an inverted MOSFET and for an accumulated MOSFET, respectively. These measurements together with numerical simulations provided from a model for quantum effects are used to determine flat band voltages between the plural gates and a channel. Next, an effective normal electric field is calculated as a vector line integral by using a set of flat band voltages for the measured capacity as a lower integration limit. Lastly, mobility depending on the effective normal electric field is calculated from current-gate voltage characteristic measurements and capacity measurements in a source-drain path, and the calculated mobility is substituted into an equation for a current-voltage curve between source and drain.
    • 针对反向MOSFET的栅极和积累的MOSFET中的每一个的电压变化分别测量具有多个栅极的场效应晶体管的容量栅极电压特性。 这些测量结果与从量子效应模型提供的数值模拟一起用于确定多个门和通道之间的平带电压。 接下来,通过使用一组用于测量容量的平带电压作为下积分极限,计算有效正常电场作为矢量线积分。 最后,根据源极 - 漏极路径中的电流 - 栅极电压特性测量和电容测量值计算出有效正常电场的迁移率,并将计算的迁移率代入源极和漏极之间的电流 - 电压曲线的方程式。