会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明专利
    • AT234268T
    • 2003-03-15
    • AT96921278
    • 1996-06-04
    • CHIRON CORP
    • ZUCKERMANN RONALD NGOFF DANE ANG SIMONSPEAR KERRYSCOTT BARBARA OSIGMUND AARON CGOLDSMITH RICHARD AMARLOWE CHARLES KPEI YAZHONGRICHTER LUTZSIMON REYNA
    • C07D243/14A61K38/00C07B61/00C07D217/24C07D221/12C07D487/04C07K1/04C07K7/06C07K7/08C07K14/00C08G69/10C07K1/36
    • A solid-phase method for the synthesis of N-substituted oligomers, such as poly (N-substituted glycines) (referred to herein as poly NSGs) is used to obtain oligomers, such as poly NSGs of potential therapeutic interest which poly NSGs can have a wide variety of side-chain substituents. Each N-substituted glycine monomer is assembled from two "sub-monomers" directly on the solid support. Each cycle of monomer addition consists of two steps: (1) acylation of a secondary amine bound to the support with an acylating agent comprising a leaving group capable of nucleophilic displacement by -NH2, such as a haloacetic acid, and (2) introduction of the side-chain by nucleophilic displacement of the leaving group, such as halogen (as a solid support-bound alpha -haloacetamide) with a sufficient amount of a second sub-monomer comprising an -NH2 group, such as a primary amine, alkoxyamine, semicarbazide, acyl hydrazide, carbazate or the like. Repetition of the two step cycle of acylation and displacement gives the desired oligomers. The efficient synthesis of a wide variety of oligomeric NSGs using automated synthesis technology of the present method makes these oligomers attractive candidates for the generation and rapid screening of diverse peptidomimetic libraries. The oligomers of the invention, such as N-substituted glycines (i.e. poly NSGs) disclosed here provide a new class of peptide-like compounds not found in nature, but which are synthetically accessible and have been shown to possess significant biological activity and proteolytic stability. Combinatorial libraries of cyclic compounds are disclosed wherein the cyclic compounds are comprised of at least one ring structure derived from cyclization of a peptoid backbone. The diversity of product compounds is generated by the sequential addition of substituted submonomers. The combinatorial library includes 10 or more, preferably 100 or more, and more preferably 1,000 or more distinct and different compounds. The library includes each of the product compounds in retrievable and analyzable amounts and preferably includes at least one biologically active compound. Methods of synthesizing the combinatorial libraries and assay devices produced using the libraries are disclosed as is methodology for screening for and obtaining biologically active cyclic organic compounds.