会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 78. 发明专利
    • Partial gas phase oxidation of acrolein to acrylic acid or methacrolein to methacrylic acid, useful e.g. as monomer to prepare polymers, comprises using a tube bundle reactor in reaction tube of a vertically arranged reaction tubes
    • DE102007019597A1
    • 2008-05-15
    • DE102007019597
    • 2007-04-24
    • BASF AG
    • HAMMON ULRICHFRIESE THORSTENPETZOLDT JOCHENMUELLER-ENGEL KLAUS JOACHIMCREMER ULRICHRAICHLE ANDREAS
    • C07C57/055
    • Process for implementing a heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid or methacrolein to methacrylic acid in a solid catalyst bed comprises using a tube bundle reactor in reaction tube of a vertically arranged bundle of reaction tubes (9), which are closed by a reactor jacket; where: the both ends of the individual reaction tubes are open and each reaction tubes terminate with its upper end in a passage of a top tube plate sealed above in reactor jacket and with its lower end in a passage of a down tube plate (5) sealed below in reactor jacket. Process for implementing a heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid or methacrolein to methacrylic acid in a solid catalyst bed comprises using a tube bundle reactor in reaction tube of a vertically arranged bundle of reaction tubes (9), which are closed by a reactor jacket; where: the both ends of the individual reaction tubes are open and each reaction tubes terminate with its upper end in a passage of a top tube plate sealed above in reactor jacket and with its lower end in a passage of a down tube plate (5) sealed below in reactor jacket; the exterior of the reaction tubes, the top and the down tube plate, and the reactor jacket differentiate conjointly to the reaction tube surrounding chamber, and each of the two tube plates is spanned by at least a reactor cover (6) having an opening, with which, in order to set start-up in several respects, to the reaction tubes of the tube bundle reactor, at least an opening (3) in one of the both reactor covers supplies a reaction gas inlet mixture (1) containing >= 3 vol.% of acrolein or methacrolein and additionally molecular oxygen; at least an opening of the other reactor cover discharges by partial gas phase oxidation of the acrolein to acrylic acid or methacrolein to methacrylic acid, where the passage of the product gas mixture (2) containing acrylic acid or methacrylic acid results in the solid catalyst bed, which is present in the reaction tubes; at least a liquid heat exchange medium is supplied on the jacket side of the tube bundle reactor around the reaction tubes in such a manner that each of the two surfaces, which turned to each other, of the two tube plates is moistened by liquid heat exchange medium; the liquid heat exchange medium is inwardly introduced with a temperature T w(in) into the reaction tubes surrounding chamber and is outwardly emitted with the temperature T w(out) from the reaction tubes surrounding chamber; the temperature T w(in) of the liquid heat exchange medium, which moistens the tube plate spanned by the tube cover having the at least one opening, is at least 290[deg] C; the reaction gas inflow mixture entering into the opening has a temperature of = 285[deg] C, and the temperature of the surface of the reactor plate (4) turned to the reactor cover having at least an opening, has a value of = 285[deg] C.
    • 80. 发明专利
    • Preparing acrylic acid comprises supplying propane gas to a zone to give a gas containing e.g. propylene, supplying molecular oxygen, feeding oxidation reactor with another gas containing e.g. propylene and subjecting the gas to oxidation
    • DE102006024901A1
    • 2007-11-29
    • DE102006024901
    • 2006-05-24
    • BASF AG
    • MACHHAMMER OTTOMUELLER-ENGEL KLAUS JOACHIMDIETERLE MARTIN
    • C07C45/28
    • Preparing acrolein and/or acrylic acid from propane comprises supplying two gaseous, propane-containing current to a first reaction zone A, under the formation of a reaction gas A; introducing the reaction gas A to a reaction zone A, supplying molecular oxygen and removing the product gas containing propylene, propane and water vapor; separating water vapor from the product gas A; feeding oxidation reactor with a reaction gas B containing propane, propylene and molecular oxygen and subjecting propylene to heterogeneously catalyzed, partial gas-phase oxidation. Preparation of acrolein and/or acrylic acid from propane comprises: (a) supplying at least two gaseous, propane-containing current (where one contains at least a fresh propane) to a first reaction zone A, under the formation of a reaction gas A; introducing the reaction gas A in the reaction zone A, formed through at least a catalyst bed by means of partial heterogeneous catalytic dehydrogenation of propane, molecular hydrogen and propylene, supplying molecular oxygen to the reaction zone A, where the molecular oxygen oxidizes a partial quantity of molecular hydrogen contained in the reaction gas A to form water vapor in the reaction zone A, and removing the product gas containing propylene, propane and water vapor, from the reaction zone A; (b) partially or completely separating, optionally in a first separation zone I, the water vapor contained in the product gas A by means of condensation incorporating indirect and/or direct cooling of the product gas A, while leaving behind a product gas Aa; (c) using the product gas A or Aa along with the supply of molecular oxygen, in a reaction zone B, for feeding at least an oxidation reactor with a reaction gas B containing propane, propylene and molecular oxygen, and subjecting the propylene contained in the reactor to heterogeneously catalyzed, partial gas-phase oxidation to form acrolein and/or acrylic acid as end product, and product gas B containing non-converted propane; (d) discharging the product gas B from the reaction zone B and separating the end product in a second separation zone II, while leaving behind a residual gas containing propane; (e) optionally reintroducing the partial quantity of the residual gas exhibiting the same composition of the residual gas as a propane-containing feed stream into the reaction zone A; (f) partially or completely separating the water vapor and/or the molecular hydrogen, in a separation zone III, which are possibly contained previously in the residual gas that is not fedback into the reaction zone A, by means of condensation and membrane separation processes respectively, and taking up the contained propane from the residual gas by absorption in an organic solvent under the formation of an absorbed substance that contains propane; and (g) separating the propane, in a separation zone IV, from the absorbed substance and reintroducing as propane-containing feed stream into the reaction zone A, where in the reaction zone A, at least lot of molecular hydrogen is oxidized to form water vapor, so that the hydrogen quantity that is oxidized in the reaction zone A to form water vapor amounts to at least 20 mol.% of the quantity of molecular hydrogen that is formed in the reaction zone A.