会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明申请
    • Laser device
    • 激光设备
    • US20050036531A1
    • 2005-02-17
    • US10892475
    • 2004-07-16
    • Hirofumi KanAkihiro SoneTakunori TairaYasunori Furukawa
    • Hirofumi KanAkihiro SoneTakunori TairaYasunori Furukawa
    • H01S3/16H01S3/042H01S3/06H01S3/091H01S3/094H01S3/0941H01S3/10H01S3/113
    • H01S3/0941H01S3/042H01S3/0604H01S3/094038H01S3/1611H01S3/1671
    • A laser device 1 is provided with: a solid sate laser medium made of GdVO4 or YVO4 to which Nd3+ is added, having first and second surfaces 10A, 10B facing each other; a high reflection film 12 formed on the first surface of the laser medium for reflecting light having a wavelength in a first wavelength range 880±5 nm and in a second wavelength range from 910 nm to 916 nm; a reflecting means 20 placed in a manner where an optical resonator of which the resonance Q-value for light having a wavelength in the second wavelength range is greater than the resonance Q-value for light of every wavelength in a third wavelength range from 1060 nm to 1065 nm is formed together with the high reflection film and the laser medium is positioned within the resonator; and an excitation light source 22 that outputs light having a wavelength in the first wavelength range for exciting the laser medium. Laser device 1 is formed so that light from the excitation light source is guided into the resonator in a direction different from the optical axis direction of the resonator, and enters into the laser medium. As a result, a solid state laser device having a high light-emission efficiency can be implemented.
    • 激光装置1设置有:添加有Nd + 3+的GdVO 4或YVO 4制成的固体激光介质,具有彼此面对的第一和第二表面10A,10B; 形成在激光介质的第一表面上的高反射膜12,用于反射具有880±5nm的第一波长范围和910nm至916nm的第二波长范围的波长的光; 一个反射装置20,以这样的方式放置:其中具有第二波长范围的波长的光的谐振Q值大于来自1060nm的第三波长范围内的每个波长的光的谐振Q值的光学谐振器 与高反射膜一起形成1065nm,激光介质位于谐振器内; 以及激励光源22,其输出具有用于激发激光介质的第一波长范围的波长的光。 激光装置1形成为使得来自激发光源的光沿着与谐振器的光轴方向不同的方向被引导到谐振器中,并进入激光介质。 结果,可以实现具有高发光效率的固态激光器件。
    • 62. 发明授权
    • Photocathode having AlGaN layer with specified Mg content concentration
    • 具有特定Mg含量浓度的AlGaN层的光电阴极
    • US06831341B2
    • 2004-12-14
    • US10416703
    • 2003-05-14
    • Hirofumi KanMinoru NiigakiMasashi OhtaYasufumi TakagiShoichi Uchiyama
    • Hirofumi KanMinoru NiigakiMasashi OhtaYasufumi TakagiShoichi Uchiyama
    • H01J134
    • H01J31/507H01J1/34H01J40/06H01J43/08H01J2231/50021
    • Ultraviolet light incident from the side of a surface layer 5 passes through the surface layer 5 to reach an optical absorption layer 4. Light which reaches the optical absorption layer 4 is absorbed within the optical absorption layer 4, and photoelectrons are generated within the optical absorption layer 4. Photoelectrons diffuse within the optical absorption layer 4, and reach the interface between the optical absorption layer 4 and the surface layer 5. Because the energy band is curved in the vicinity of the interface between the optical absorption layer 4 and surface layer 5, the energy of the photoelectrons is larger than the electron affinity in the surface layer 5, and so photoelectrons are easily ejected to the outside. Here, the optical absorption layer 4 is formed from an Al0.3Ga0.7N layer with an Mg content concentration of not less than 2×1019 cm−3 but not more than 1×1020 cm−3, so that a solar-blind type semiconductor photocathode 1 with high quantum efficiency is obtained.
    • 从表面层5侧入射的紫外光通过表层5到达光吸收层4.到达光吸收层4的光被吸收在光吸收层4内,并且在光吸收中产生光电子 光电子在光吸收层4内扩散,并到达光吸收层4和表面层5之间的界面。因为能带在光吸收层4和表面层5之间的界面附近弯曲 ,光电子的能量大于表面层5中的电子亲和力,因此光电子容易被排出到外部。 这里,光吸收层4由Mg含量浓度不小于2×10 19 cm -3但不大于1×10 20 cm -3的Al 0.3 Ga 0.7 N层形成,因此 得到具有高量子效率的太阳能型半导体光电阴极1。
    • 64. 发明授权
    • Optical flip-flop circuit
    • 光触发器电路
    • US5109358A
    • 1992-04-28
    • US423203
    • 1989-10-17
    • Yoshihiko MizushimaKazutoshi NakajimaToru HirohataTakashi IidaYoshihisa WarashinaKenichi SugimotoHirofumi Kan
    • Yoshihiko MizushimaKazutoshi NakajimaToru HirohataTakashi IidaYoshihisa WarashinaKenichi SugimotoHirofumi Kan
    • G11C13/04G02F3/00G11C11/42H03K3/42
    • G11C11/42
    • An optical flip-flop circuit which includes an electrical power source for providing an electrical signal, a light-receiving element provided in series with the power source for switching the electrical signal in response to an optical signal, a light-emitting element for emitting the optical signal in response to the electric signal, an electrical signal path between the light-receiving element and the light-emitting element, whereby the electrical signal passes from the power source to the light-emitting element in response to the optical signal received by the light-receiving element, a light path for directing the optical signal from the light-emitting element to the light-receiving element, wherein the light path and the electrical signal path form a signal loop through which a signal circulates, said circulating signal comprising the electrical signal through the electrical signal path portion of the signal loop and the optical signal through the light path portion of the signal loop, and input/output means for providing an input optical signal to the light-receiving element and for emitting a portion of the optical signal directed by the light path.
    • 一种光学触发器电路,其包括用于提供电信号的电源,与电源串联设置的光接收元件,用于响应光信号切换电信号;发光元件,用于发射 响应于电信号的光信号,光接收元件和发光元件之间的电信号路径,由此电信号响应于由光接收元件和发光元件接收的光信号而从电源传递到发光元件 光接收元件,用于将光信号从发光元件引导到光接收元件的光路,其中光路和电信号路径形成信号循环通过的信号回路,所述循环信号包括 通过信号环路的电信号路径部分的电信号和通过信号的光路部分的光信号 环路和输入/输出装置,用于向光接收元件提供输入光信号,并用于发射由光路引导的光信号的一部分。
    • 68. 发明授权
    • Silicon light-emitting element
    • 硅发光元件
    • US08284345B2
    • 2012-10-09
    • US13100650
    • 2011-05-04
    • Shucheng ChuHirofumi Kan
    • Shucheng ChuHirofumi Kan
    • G02F1/1335
    • H01L33/34H01L33/0008H01L33/025
    • A silicon light-emitting element includes a first conductivity type silicon substrate 10 having a first surface 10a and a second surface 10b on a side opposite to the first surface 10a, an insulating film 11 provided on the first surface 10a of the silicon substrate 10, a silicon layer 12 provided on the insulating film 11, and having a second conductivity type different from the first conductivity type, a first electrode 13 provided on the silicon layer 12, and a second electrode 14 provided on the second surface of the silicon substrate, and the silicon substrate 10 has a carrier concentration of 5×1015cm−3 to 5×1018cm−3, the silicon layer 12 has a carrier concentration of 1×1017cm−3 to 5×1019cm−3, and that is larger by one digit or more than the carrier concentration of the silicon substrate 10, and the insulating film 11 has a film thickness of 0.3 nm to 5 nm. Accordingly, a silicon light-emitting element that is applicable to a silicon photonics light source is realized.
    • 硅发光元件包括具有第一表面10a和与第一表面10a相对的一侧上的第二表面10b的第一导电型硅衬底10,设置在硅衬底10的第一表面10a上的绝缘膜11, 设置在绝缘膜11上并具有不同于第一导电类型的第二导电类型的硅层12,设置在硅层12上的第一电极13和设置在硅衬底的第二表面上的第二电极14, 硅衬底10的载流子浓度为5×10 15 cm -3〜5×10 18 cm -3,硅层12的载流子浓度为1×10 17 cm -3〜5×10 19 cm -3,大于1位 或大于硅衬底10的载流子浓度,并且绝缘膜11具有0.3nm至5nm的膜厚度。 因此,实现了可应用于硅光子学光源的硅发光元件。
    • 69. 发明申请
    • METHOD OF DETERMINING NUCLEAR FUSION IRRADIATION COORDINATES, DEVICE FOR DETERMINING NUCLEAR FUSION IRRADIATION COORDINATES, AND NUCLEAR FUSION DEVICE
    • 确定核熔融辐射坐标的方法,用于确定核熔融辐射坐标的装置和核熔融装置
    • US20120155590A1
    • 2012-06-21
    • US13388500
    • 2010-07-20
    • Masakatsu MurakamiNobuhiko SarukuraHiroshi AzechiRyo YasuharaToshiyuki KawashimaHirofumi Kan
    • Masakatsu MurakamiNobuhiko SarukuraHiroshi AzechiRyo YasuharaToshiyuki KawashimaHirofumi Kan
    • G21B1/00G06F17/10
    • G21B1/23H05H1/22
    • An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated. A method of determining nuclear fusion irradiation coordinates according to the present invention is a method of calculating irradiation coordinates when energy lines are irradiated onto a nuclear fusion target, and comprises an initial arrangement step S202 of virtually arranging electric charges Qi at initial coordinates of the number of irradiation coordinates NB on a spherical surface S0 set by using random numbers, a coordinate analysis step S203 of analyzing coordinates ri of the electric charges Qi in time series based on coulomb forces acting among the electric charges Qi by constraining the coordinates ri onto the spherical surface S0, potential evaluation steps S205 and S206 of determining a timing at which potential energies of the electric charges Qi were stabilized based on the coordinates ri, and an irradiation coordinate deriving step S207 of deriving coordinates ri at the timing at which potential energies were stabilized as irradiation coordinates of energy lines in a case where a nuclear fusion target is arranged at the center of the spherical surface S0.
    • 本发明的目的在于有效地提高被照射的能量线的均匀性。 根据本发明的确定核聚变照射坐标的方法是当将能量线照射到核聚变靶上时计算辐射坐标的方法,包括在数字的初始坐标处虚拟地布置电荷Qi的初始布置步骤S202 在通过使用随机数设置的球面S0上的照射坐标NB的坐标分析步骤S203,其基于通过将坐标ri约束到球面上来分析基于通过电荷Qi之间的库仑力的时间序列的电荷Qi的坐标ri 表面S0,基于坐标ri确定电荷Qi的势能的定时的电位评估步骤S205和S206以及在势能稳定的定时导出坐标ri的照射坐标导出步骤S207 作为能量线的照射坐标 将核聚变靶设置在球面S0的中央的情况。