会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • System and methods for detecting temporal music trends from online services
    • 用于从在线服务中检测时间音乐趋势的系统和方法
    • US09524487B1
    • 2016-12-20
    • US13466817
    • 2012-05-08
    • Jay YagnikDouglas Eck
    • Jay YagnikDouglas Eck
    • G06F15/16G06Q10/10G06F17/30G06Q30/00
    • G06Q10/10G06F17/30G06Q30/00
    • A system and methods for automatically detecting temporal music trends by observing music consumption by users of online services, for example, social networks, and user sharing habits. In some embodiments, the system and methods gather music consumption patterns (e.g., downloading, listening, sharing or the like) of users, including music identifiers for a track, album, or playlist in a user's music library and time stamps that indicate consumption times corresponding to the music identifiers. A temporal trends detection engine determines music of interest to users by analyzing music consumption patterns of users, user interests and tastes in music, and social affinity between users. A recommendations engine automatically generates and transmits recommendations of music determined by the temporal trends detection engine to be of interest to users.
    • 用于通过观察在线服务的用户(例如,社交网络)和用户共享习惯的音乐消费来自动检测时间音乐趋势的系统和方法。 在一些实施例中,系统和方法收集用户的音乐消费模式(例如,下载,收听,共享等),包括用户音乐库中的音轨,专辑或播放列表的音乐标识符,以及指示消费时间的时间戳 对应于音乐标识符。 时间趋势检测引擎通过分析用户的音乐消费模式,音乐中的用户兴趣和品味以及用户之间的社交关系来确定用户感兴趣的音乐。 推荐引擎自动生成并发送由时间趋势检测引擎确定的用户兴趣的音乐推荐。
    • 67. 发明授权
    • Method and system for entropy-based semantic hashing
    • 基于熵的语义散列的方法和系统
    • US08676725B1
    • 2014-03-18
    • US12794380
    • 2010-06-04
    • Ruei-Sung LinDavid RossJay Yagnik
    • Ruei-Sung LinDavid RossJay Yagnik
    • G06F15/18
    • G06N99/005
    • Methods, systems and articles of manufacture for identifying semantic nearest neighbors in a feature space are described herein. A method embodiment includes generating an affinity matrix for objects in a given feature space, wherein the affinity matrix identifies the semantic similarity between each pair of objects in the feature space, training a multi-bit hash function using a greedy algorithm that increases the Hamming distance between dissimilar objects in the feature space while minimizing the Hamming distance between similar objects, and identifying semantic nearest neighbors for an object in a second feature space using the multi-bit hash function. A system embodiment includes a hash generator configured to generate the affinity matrix and train the multi-bit hash function, and a similarity determiner configured to identify semantic nearest neighbors for an object in a second feature space using the multi-bit hash function.
    • 本文描述了用于识别特征空间中的语义最近邻居的方法,系统和制品。 方法实施例包括为给定特征空间中的对象生成亲和度矩阵,其中亲和矩阵识别特征空间中每对对象之间的语义相似性,使用增加汉明距离的贪心算法训练多比特哈希函数 在特征空间中的不相似对象之间,同时使相似对象之间的汉明距离最小化,并且使用多位哈希函数来识别第二特征空间中的对象的语义最近邻居。 系统实施例包括被配置为生成亲和度矩阵并训练多比特哈希函数的哈希发生器,以及被配置为使用多比特哈希函数来识别第二特征空间中的对象的语义最近邻居的相似性确定器。
    • 69. 发明授权
    • Training of adapted classifiers for video categorization
    • 适应分类器的视频分类培训
    • US08452778B1
    • 2013-05-28
    • US12874015
    • 2010-09-01
    • Yang SongMing ZhaoJay Yagnik
    • Yang SongMing ZhaoJay Yagnik
    • G06F17/30G10L19/12
    • G06F17/30799G06F17/30796G06K9/00711
    • A classifier training system trains adapted classifiers for classifying videos based at least in part on scores produced by application of text-based classifiers to textual metadata of the videos. Each classifier corresponds to a particular category, and when applied to a given video indicates whether the video represents the corresponding category. The classifier training system applies the text-based classifiers to textual metadata of the videos to obtain the scores, and also extracts features from content of the videos, combining the scores and the content features for a video into a set of hybrid features. The adapted classifiers are then trained on the hybrid features. The adaption of the text-based classifiers from the textual domain to the video domain allows the training of accurate video classifiers (the adapted classifiers) without requiring a large training set of authoritatively labeled videos.
    • 分类器训练系统训练适用的分类器,用于至少部分地基于将基于文本的分类器应用于视频的文本元数据而产生的分数来分类视频。 每个分类器对应于特定类别,并且当应用于给定视频时指示视频是否表示相应类别。 分类器训练系统将基于文本的分类器应用于视频的文本元数据以获得分数,并且还从视频内容中提取特征,将视频的分数和内容特征组合成一组混合特征。 然后对适应的分类器对混合特征进行训练。 基于文本的分类器从文本域到视频域的适应允许训练准确的视频分类器(适应的分类器),而不需要大量的授权标签视频的训练集。