会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 64. 发明授权
    • Apparatus, method, system and computer-readable medium for storing and managing image data
    • 用于存储和管理图像数据的装置,方法,系统和计算机可读介质
    • US08407267B2
    • 2013-03-26
    • US12554436
    • 2009-09-04
    • Johannes FeulnerShaohua Kevin Zhou
    • Johannes FeulnerShaohua Kevin Zhou
    • G06F17/30
    • G06F19/321G06F19/00
    • An apparatus, method, system and computer-readable medium store and manage image data with automatic labeling of image data corresponding to body slices, such as obtained by a computed tomography scanner. The labels include a body coordinate value along the body axis. The respective body coordinate value can be determined by comparing received image data sets with reference data sets with known attached coordinate values utilizing pattern recognition techniques. Applications include medical image data management in hospitals or operating and providing medical networks. Queries for images that include particular body regions are processed more efficiently. This results in less local memory required and narrower bandwidth resources of transmission networks.
    • 一种装置,方法,系统和计算机可读介质利用计算机断层摄影扫描器获得的对身体切片的图像数据进行自动标注来存储和管理图像数据。 标签包括身体轴线上的身体坐标值。 可以通过使用模式识别技术将接收到的图像数据集与具有已知附加坐标值的参考数据集进行比较来确定相应的身体坐标值。 应用包括医院的医学图像数据管理或运营和提供医疗网络。 对包含特定身体区域的图像的查询进行更有效的处理。 这导致需要较少的本地存储器和较窄的传输网络的带宽资源。
    • 66. 发明申请
    • Method and System for Training a Landmark Detector using Multiple Instance Learning
    • 使用多实例学习训练地标检测器的方法和系统
    • US20120070074A1
    • 2012-03-22
    • US13228509
    • 2011-09-09
    • David LiuShaohua Kevin Zhou
    • David LiuShaohua Kevin Zhou
    • G06K9/62
    • G06K9/6257G06K2209/051
    • An apparatus and method for training a landmark detector receives training data which includes a plurality of positive training bags, each including a plurality of positively annotated instances, and a plurality of negative training bags, each including at least one negatively annotated instance. Classification function is initialized by training a first weak classifier based on the positive training bags and the negative training bags. All training instances are evaluated using the classification function. For each of a plurality of remaining classifiers, a cost value gradient is calculated based on spatial context information of each instance in each positive bag evaluated by the classification function. A gradient value associated with each of the remaining weak classifiers is calculated based on the cost value gradients, and a weak classifier is selected which has a lowest associated gradient value and given a weighting parameter and added to the classification function.
    • 用于训练地标检测器的装置和方法接收训练数据,训练数据包括多个正训练袋,每个正训练袋包括多个带有正面注释的实例,以及多个负训练袋,每个包括至少一个负注释实例。 基于积极的训练袋和负面训练袋训练第一个弱分类器来初始化分类功能。 使用分类函数评估所有训练实例。 对于多个剩余分类器中的每一个,基于由分类函数评估的每个正包中的每个实例的空间上下文信息来计算成本值梯度。 基于成本值梯度计算与剩余弱分类器中的每一个相关联的梯度值,并且选择具有最低相关梯度值并给出加权参数并加到分类函数的弱分类器。