会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 68. 发明专利
    • ADAPTIVE SEISMIC NOISE AND INTERFERENCE ATTENUATION METHOD
    • CA2332374A1
    • 1999-11-25
    • CA2332374
    • 1999-05-18
    • SCHLUMBERGER CA LTD
    • OZBEK ALI
    • G01V1/36
    • A method relating to filtering coherent noise and interference from seismic data by constrained adaptive beamforming is described using a constraint design methodology which allows the imposition of an arbitrary predesigned quiescent response on the beamformer. The method also makes sure that the beamformer response in selected regions of the frequency-wavenumber space is entirely controlled by this quiescent response, hence ensuring signal preservation and robustness to perturbations. Built-in regularization brings an additional degree of robustness. Seismic signals with arbitrary spectral content in the frequency-wavenumber domain are preserved, while coherent noi se and interference that is temporally and spatially nonstationary is adaptivel y filtered. The approach is applicable to attenuation of all types of coherent noise in seismic data including swell-noise, bulge-wave noise, ground-roll, air wave, seismic vessel and rig interference, etc. It is applicable to both linear or areal arrays.
    • 69. 发明专利
    • ADAPTIVE SEISMIC NOISE AND INTERFERENCE ATTENUATION METHOD
    • CA2332374C
    • 2007-10-09
    • CA2332374
    • 1999-05-18
    • SCHLUMBERGER CA LTD
    • OZBEK ALI
    • G01V1/36
    • A method relating to filtering coherent noise and interference from seismic data by constrained adaptive beamforming is described using a constraint design methodology which allows the imposition of an arbitrary predesigned quiescent response on the beamformer. The method also makes sure that the beamformer response in selected regions of t he frequency-wavenumber space is entirely controlled by this quiescent response, hence ensuring signal preservation and robustness to perturbations. Built-in regularization brings an additional degree of robustness. Seismic signals with arbitrary spectral content in the frequency-wavenumber domain are preserved, while coherent noise and interference that is temporally and spatially nonstationary is adaptivel y filtered. The approach is applicable to attenuation of all types of coherent noise in seismic data including swell-noise, bulge-wave noise, ground-roll, air wave, seismic vessel and rig interference, etc. It is applicable to both linear or areal arrays.