会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Optimizing real-time rendering of texture mapped object models relative to adjustable distortion thresholds
    • 优化纹理映射对象模型相对于可调失真阈值的实时渲染
    • US07286135B2
    • 2007-10-23
    • US10990244
    • 2004-11-15
    • Xi WangXin TongStephen LinBaining GuoHeung-Yeung Shum
    • Xi WangXin TongStephen LinBaining GuoHeung-Yeung Shum
    • G09G5/00G06T17/00G06T15/60G06T15/50
    • G06T15/04
    • A “mesostructure renderer” uses pre-computed multi-dimensional “generalized displacement maps” (GDM) to provide real-time rendering of general non-height-field mesostructures on both open and closed surfaces of arbitrary geometry. In general, the GDM represents the distance to solid mesostructure along any ray cast from any point within a volumetric sample. Given the pre-computed GDM, the mesostructure renderer then computes mesostructure visibility jointly in object space and texture space, thereby enabling both control of texture distortion and efficient computation of texture coordinates and shadowing. Further, in one embodiment, the mesostructure renderer uses the GDM to render mesostructures with either local or global illumination as a per-pixel process using conventional computer graphics hardware to accelerate the real-time rendering of the mesostructures. Further acceleration of mesostructure rendering is achieved in another embodiment by automatically reducing the number of triangles in the rendering pipeline according to a user-specified threshold for acceptable texture distortion.
    • “mesostructure渲染器”使用预先计算的多维“广义位移图”(GDM),以便在任意几何的开放和闭合表面上提供一般非高度场介观结构的实时渲染。 一般来说,GDM表示沿着体积样品内的任何点的任何射线投射到固体介观结构的距离。 给定预先计算的GDM,然后,介观结构渲染器在对象空间和纹理空间中联合计算介观结构可见度,从而实现纹理失真的控制和纹理坐标和阴影的有效计算。 此外,在一个实施例中,使用传统计算机图形硬件的介面结构渲染器使用GDM来渲染具有局部或全局照明的介观结构作为每像素处理,以加速介观结构的实时渲染。 在另一个实施例中,通过根据用户指定的可接受纹理失真的阈值自动减少渲染流水线中的三角形数量来实现进一步加速的介观结构渲染。
    • 63. 发明授权
    • Interactive water effects using texture coordinate shifting
    • 使用纹理坐标移动的互动水效果
    • US07164424B2
    • 2007-01-16
    • US11113208
    • 2005-04-22
    • Lin LiangYanyun ChenYing-Qing XuBaining GuoHeung-Yeung Shum
    • Lin LiangYanyun ChenYing-Qing XuBaining GuoHeung-Yeung Shum
    • G06T13/00
    • G06T13/60G06T13/80G06T15/04G06T2210/24H04N5/262
    • A system and process for adding a photorealistic rendering of a body of water to a virtual 3D scene or image and creating a video therefrom having interactive water effects. A region of water is added to an image by adding an area depicting the original scene as it would appear if reflected by still body of water. Then, the appearance of the added water region is distorted over a series of image frames in such a way as to simulate how the reflected scene would look if the surface of the water were in motion. The water can have dynamic waves and the user can interact with the water in numbers of ways, including generating ripples on the water surface and creating rain. In addition, these effects can be achieved at full screen resolution with the use of the latest graphics hardware by employing a texture shifting technique.
    • 一种用于向虚拟3D场景或图像添加水体的真实感渲染并从其创建具有交互式水效果的视频的系统和过程。 通过添加描绘原始场景的区域,如水面反映的那样,将会显示水域。 然后,增加的水域的外观在一系列图像帧上变形,以模拟如果水的表面运动,反射场景将如何看起来。 水可以具有动态波,用户可以以多种方式与水相互作用,包括在水面上产生波纹并产生雨水。 此外,通过采用纹理移位技术,通过使用最新的图形硬件,可以在全屏幕分辨率下实现这些效果。
    • 66. 发明授权
    • System and method for synthesis of bidirectional texture functions on arbitrary surfaces
    • 用于在任意表面上合成双向纹理函数的系统和方法
    • US07149368B2
    • 2006-12-12
    • US10299623
    • 2002-11-19
    • Xin TongLigang LiuBaining GuoHeung-Yeung Shum
    • Xin TongLigang LiuBaining GuoHeung-Yeung Shum
    • G06K9/36
    • G06T15/04
    • A bidirectional texture function (BTF) synthesizer serves to synthesize BTFs on arbitrary manifold surfaces using “surface textons” given a sample BTF as an input. The synthesized BTFs fit the surface geometry naturally and seamlessly, and not only look similar to a sample BTF in all viewing and lighting conditions, but also exhibit a consistent mesostructure when the viewing and lighting directions change. Further, the synthesized BTFs capture the fine-scale shadows, occlusions, and specularities caused by surface mesostructures, thereby improving the perceived realism of the textured surfaces. In addition, the BTF synthesizer can describe real-world textures to allow a user to decorate real-world geometry with real-world textures. Finally, BTF synthesis using surface textons works well for any materials that can be described by three-dimensional textons.
    • 双向纹理函数(BTF)合成器用于在给定样本BTF作为输入的情况下使用“表面纹理”合成任意歧管表面上的BTF。 合成的BTF自然无缝地适应表面几何,并且在所有观察和照明条件下不仅看起来类似于样品BTF,而且在观察和照明方向改变时也表现出一致的介观结构。 此外,合成的BTF捕获由表面介观结构引起的微小尺度的阴影,遮挡物和镜面反射,从而改善纹理表面的感知现实性。 此外,BTF合成器可以描述真实世界的纹理,以允许用户使用真实世界纹理来装饰真实世界的几何。 最后,使用表面纹理的BTF合成对于可以由三维文本描述的任何材料起作用。
    • 67. 发明授权
    • System and process for optimal texture map reconstruction from multiple views
    • 用于从多个视图获得最佳纹理贴图重建的系统和过程
    • US06985156B2
    • 2006-01-10
    • US10875741
    • 2004-06-23
    • Lifeng WangSing Bing KangRichard SzeliskiHeung-Yeung ShumBaining Guo
    • Lifeng WangSing Bing KangRichard SzeliskiHeung-Yeung ShumBaining Guo
    • G09G5/00
    • G06T11/001
    • A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
    • 描述用于从场景的多个视图重建最佳纹理图的系统和过程。 实质上,这种重建是基于来自多个源的纹理的最佳合成。 这通常使用基本图像处理理论来实现,以导出用于混合多个视图的正确权重。 即,遵循重构,翘曲,预过滤和重采样的步骤,以便将参考纹理扭曲到期望的位置,并计算用于最佳混合的空间变体权重。 这些权重考虑到纹理投影中的各向异性和由于缩短引起的采样频率的变化。 权重相结合,最优纹理的计算被视为恢复问题,其涉及求解线性方程组。 这种方法可以并入各种应用中,例如3D模型的纹理化,通过合成方法的分析,超分辨率技术和视图相关的纹理映射。
    • 69. 发明申请
    • System and method for generating generalized displacement maps from mesostructure geometries
    • 从介观结构几何生成广义位移图的系统和方法
    • US20050280647A1
    • 2005-12-22
    • US10990142
    • 2004-11-15
    • Xi WangXin TongStephen LinBaining GuoHeung-Yeung Shum
    • Xi WangXin TongStephen LinBaining GuoHeung-Yeung Shum
    • G06T15/20G06T15/50G06T15/60G06T17/00G09G5/00
    • G06T15/04
    • A “mesostructure renderer” uses pre-computed multi-dimensional “generalized displacement maps” (GDM) to provide real-time rendering of general non-height-field mesostructures on both open and closed surfaces of arbitrary geometry. In general, the GDM represents the distance to solid mesostructure along any ray cast from any point within a volumetric sample. Given the pre-computed GDM, the mesostructure renderer then computes mesostructure visibility jointly in object space and texture space, thereby enabling both control of texture distortion and efficient computation of texture coordinates and shadowing. Further, in one embodiment, the mesostructure renderer uses the GDM to render mesostructures with either local or global illumination as a per-pixel process using conventional computer graphics hardware to accelerate the real-time rendering of the mesostructures. Further acceleration of mesostructure rendering is achieved in another embodiment by automatically reducing the number of triangles in the rendering pipeline according to a user-specified threshold for acceptable texture distortion.
    • “mesostructure渲染器”使用预先计算的多维“广义位移图”(GDM),以便在任意几何的开放和闭合表面上提供一般非高度场介观结构的实时渲染。 一般来说,GDM表示沿着体积样品内的任何点的任何射线投射到固体介观结构的距离。 给定预先计算的GDM,然后,介观结构渲染器在对象空间和纹理空间中联合计算介观结构可见度,从而实现纹理失真的控制和纹理坐标和阴影的有效计算。 此外,在一个实施例中,使用传统计算机图形硬件的介面结构渲染器使用GDM来渲染具有局部或全局照明的介观结构作为每像素处理,以加速介观结构的实时渲染。 在另一个实施例中,通过根据用户指定的可接受纹理失真的阈值自动减少渲染流水线中的三角形数量来实现进一步加速的介观结构渲染。