会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 67. 发明授权
    • CMOS pixels for ALC and CDS and methods of forming the same
    • 用于ALC和CDS的CMOS像素及其形成方法
    • US07105793B2
    • 2006-09-12
    • US10689635
    • 2003-10-22
    • Howard E. Rhodes
    • Howard E. Rhodes
    • H01L27/00
    • H01L27/14627H01L27/1462H01L27/14806H01L27/14887H04N5/3535H04N5/37457
    • Embodiments of the invention provide pixel cells that allow both automatic light control and correlated double sampling operations. The pixel cell includes first and second photo-conversion devices that can be separately read out. For example, the second photo-conversion device can be the pixel cells' floating diffusion region, with an area and doping profile suitable for photo-conversion. An image sensor may include an array of pixel cells, some or all of which have two photo-conversion devices, and peripheral circuitry for reading out signals from the pixel cells. The image sensor's readout circuitry may monitor charge generated by the second photo-conversion devices to determine when to read out signals from the first photo-conversion devices.
    • 本发明的实施例提供允许自动光控制和相关双重采样操作的像素单元。 像素单元包括可以被单独读出的第一和第二光转换器件。 例如,第二光转换装置可以是像素单元的浮动扩散区域,具有适于光转换的面积和掺杂分布。 图像传感器可以包括像素单元的阵列,其中的一些或全部具有两个光转换装置,以及用于从像素单元读出信号的外围电路。 图像传感器的读出电路可以监视由第二光转换装置产生的电荷,以确定何时从第一光转换装置读出信号。
    • 69. 发明授权
    • Trench isolation for semiconductor devices
    • 半导体器件的沟槽隔离
    • US07071531B2
    • 2006-07-04
    • US10848389
    • 2004-05-19
    • Howard E. Rhodes
    • Howard E. Rhodes
    • H01L29/00
    • H01L27/1463H01L21/76237H01L27/14643H01L27/14689
    • A method of fabricating an integrated circuit includes forming an isolation trench in a semiconductor substrate and partially filling the trench with a dielectric material so that at least the sidewalls of the trench are coated with the dielectric material. Ions are implanted into the substrate in regions directly below the isolation trench after partially filling the trench with the dielectric material. The dielectric along the sidewalls of the trenches can serve as a mask so that substantially all of the ions implanted below the isolation trenches are displaced from the active regions. After the ions are implanted in the substrate below the trenches, the remainder of the trench can be filled with the same or another dielectric material. The trench isolation technique can be used to fabricate memory, logic and imager devices which can exhibit reduced current leakage and/or reduced optical cross-talk.
    • 一种制造集成电路的方法包括在半导体衬底中形成隔离沟槽,并用电介质材料部分地填充沟槽,使得至少沟槽的侧壁被电介质材料涂覆。 在用介电材料部分地填充沟槽之后,将离子注入到隔离沟槽正下方的区域中的衬底中。 沿着沟槽的侧壁的电介质可以用作掩模,使得注入到隔离沟槽下方的基本上所有的离子从活性区域移位。 在离子注入到沟槽下方的衬底中之后,沟槽的其余部分可以用相同或另一种电介质材料填充。 沟槽隔离技术可用于制造可以显示减少的电流泄漏和/或减少的光学串扰的存储器,逻辑和成像器件。
    • 70. 发明授权
    • Single poly CMOS imager
    • 单晶CMOS成像仪
    • US06998657B2
    • 2006-02-14
    • US10688974
    • 2003-10-21
    • Howard E. Rhodes
    • Howard E. Rhodes
    • H01L27/148
    • H01L27/14643H01L27/14689
    • More complete charge transfer is achieved in a CMOS or CCD imager by reducing the spacing in the gaps between gates in each pixel cell, and/or by providing a lightly doped region between adjacent gates in each pixel cell, and particularly at least between the charge collecting gate and the gate downstream to the charge collecting gate. To reduce the gaps between gates, an insulator cap with spacers on its sidewalls is formed for each gate over a conductive layer. The gates are then etched from the conductive layer using the insulator caps and spacers as hard masks, enabling the gates to be formed significantly closer together than previously possible, which, in turn increases charge transfer efficiency. By providing a lightly doped region on between adjacent gates, a more complete charge transfer is effected from the charge collecting gate.
    • 通过减小每个像素单元中的栅极之间的间隙和/或通过在每个像素单元中的相邻栅极之间提供轻掺杂区域,特别是至少在电荷之间,在CMOS或CCD成像器中实现更完整的电荷转移 收集门和下游的门到电荷收集门。 为了减小栅极之间的间隙,在导电层上为每个栅极形成在其侧壁上具有间隔物的绝缘体盖。 然后使用绝缘体盖和间隔物作为硬掩模,从导电层蚀刻栅极,使得栅极能够形成得比先前可能的显着更靠近在一起,这又增加了电荷转移效率。 通过在相邻栅极之间提供轻掺杂区域,从电荷收集栅极实现更完整的电荷转移。