会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明授权
    • Selectively doped channel region for increased I.sub.Dsat and method for
making same
    • 选择性掺杂通道区域用于增加IDat及其制备方法
    • US5804497A
    • 1998-09-08
    • US695101
    • 1996-08-07
    • Mark I. GardnerH. Jim Fulford, Jr.Fred N. Hause
    • Mark I. GardnerH. Jim Fulford, Jr.Fred N. Hause
    • H01L21/336H01L21/8238H01L29/10H01L29/78H01L21/70
    • H01L29/66537H01L21/823807H01L29/1083H01L29/6659H01L29/7833
    • A selectively doped MOS transistor channel includes a deep impurity distribution and shallow impurity distribution. The deep impurity distribution is formed within high energy implant with an impurity of conductivity type opposite to the conductivity type of the source/drain regions of the transistor. In the n-channel regions, the deep impurity distribution preferably includes boron ions. The deep impurity distribution acts as a channel stop such that adjacent source/drain regions of the like type transistors are not inadvertently coupled during circuit operation. The shallow impurity distribution acts as a threshold implant by precisely controlling the doping of the transistor channel in the vicinity of the silicon oxide interface. The peak concentration of the shallow impurity distribution is located at a depth below the silicon surface which is greater than a depth typically associated with a threshold adjust implant. Because the impurity concentration of the shallow impurity distribution drops off rapidly from the peak concentration value, the concentration at the upper surface of the silicon substrate is not significantly greater than the doping of the silicon substrate itself. The light doping in the channel region of the transistor results in a substantially reduced threshold voltage for the transistor. Preferably, the threshold voltage of both the n-channel and p-channel devices has an absolute value of approximately 250 Mv. The lower threshold voltage translates into a higher I.sub.Dsat when the transistor is operated under normal conditions (e.g., V.sub.Gs =3 volts, V.sub.Ds =3 volts, and V.sub.sb =0 volts.)
    • 选择掺杂的MOS晶体管沟道包括深杂质分布和浅杂质分布。 深度杂质分布形成在高能量注入内,其杂质的导电类型与晶体管的源/漏区的导电类型相反。 在n沟道区域中,深杂质分布优选包括硼离子。 深杂质分布充当通道阻挡,使得类似晶体管的相邻源极/漏极区在电路操作期间不会无意中耦合。 通过精确地控制在氧化硅界面附近的晶体管沟道的掺杂,浅杂质分布充当阈值注入。 浅杂质分布的峰值浓度位于硅表面下方的深度,该深度大于通常与阈值调整植入物相关联的深度。 由于浅杂质分布的杂质浓度从峰值浓度值迅速下降,所以硅衬底上表面的浓度不会明显大于硅衬底本身的掺杂。 在晶体管的沟道区域中的轻掺杂导致晶体管的阈值电压显着降低。 优选地,n沟道和p沟道器件的阈值电压具有约250Mv的绝对值。 当晶体管在正常条件下操作时(例如,VGs = 3V,VDs = 3V,Vsb = 0V),较低的阈值电压转换为更高的IDat。
    • 65. 发明授权
    • Semiconductor wafer with enhanced pre-process denudation and
process-induced gettering
    • 半导体晶片具有增强的预处理剥蚀和工艺引起的吸气
    • US5445975A
    • 1995-08-29
    • US206977
    • 1994-03-07
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • H01L21/322H01L21/324
    • H01L21/3225Y10S148/06
    • A method is provided for pre-process denudation and process-induced gettering of a CZ silicon wafer having one or more monolithic devices embodied therein. Pre-process denudation is performed in a hydrogen ambient to out-diffuse oxygen as well as to maintain interstitial silicon flux away from the substrate surface. Process-induced gettering is performed at a low temperature to ensure stacking faults and surface irregularities do not arise from interstitial silicon bonding at the surface prior to gate oxidation. The third step of the denudation/gettering cycle involving precipitate growth is thereby delayed or forestalled until the field oxide is grown. Any changes or movement in oxygen and/or interstitial silicon within or near the substrate surface occurring after polysilicon deposition will have minimal effect upon the established gate oxide. Accordingly, gate oxide integrity (e.g., breakdown voltage and uniformity) are enhanced by the present process.
    • 提供了一种用于预处理剥蚀和具有其中实施的具有一个或多个单片器件的CZ硅晶片的工艺诱导吸除的方法。 在氢环境中进行预处理剥蚀以使氧扩散以及保持间隙硅熔剂远离衬底表面。 在低温下进行过程诱导的吸气以确保堆垛层错,并且在栅极氧化之前的表面处的间隙硅键不会产生表面不规则性。 涉及沉淀生长的剥蚀/吸除循环的第三步骤因此被延迟或预防,直到场氧化物生长。 在多晶硅沉积之后发生的衬底表面内或附近的氧和/或间隙硅中的任何变化或移动对所建立的栅极氧化物的影响最小。 因此,通过本方法增强栅极氧化物完整性(例如,击穿电压和均匀性)。
    • 66. 发明授权
    • Transistor with an ultra short channel length defined by a laterally diffused nitrogen implant
    • 具有由横向扩散的氮植入物限定的超短沟道长度的晶体管
    • US06451657B1
    • 2002-09-17
    • US09781044
    • 2001-02-08
    • Mark I. GardnerH. Jim Fulford, Jr.Charles E. May
    • Mark I. GardnerH. Jim Fulford, Jr.Charles E. May
    • H01L21336
    • H01L21/28132Y10S257/90
    • A process is disclosed for fabricating a transistor having a channel length that is smaller than lengths resolvable using common photolithography techniques. A gate oxide layer is formed over a lightly doped semiconductor substrate. A gate conductor layer is then deposited over the gate oxide layer. The upper surface of the gate conductor layer includes a future conductor area laterally bounded by a spaced pair of target areas, wherein the lateral distance between the spaced pair of target areas is preferably chosen at the photolithography threshold. Nitrogen is implanted into the spaced pair of target areas to form a spaced pair of nitrogen bearing regions within the gate conductor layer, thereby defining a nitrogen free region in the gate conductor layer. A thermal anneal reduces the width of the nitrogen free region. A variable thickness oxide layer is then grown over the entire semiconductor topography and anisotropically etched to form an oxide mask over the reduced-width nitrogen free region. Portions of the gate conductor layer not covered by the oxide mask are then removed, leaving the reduced-width nitrogen free region as a gate conductor having a width below the photolithography threshold.
    • 公开了一种用于制造具有小于使用普通光刻技术可分辨长度的沟道长度的晶体管的工艺。 在轻掺杂的半导体衬底上形成栅氧化层。 然后在栅极氧化物层上沉积栅极导体层。 栅极导体层的上表面包括由间隔开的一对目标区域横向限定的未来导体区域,其中间隔开的一对目标区域之间的横向距离优选地以光刻阈值选择。 将氮气注入到间隔开的一对目标区域中,以在栅极导体层内形成间隔开的一对含氮区域,从而在栅极导体层中限定无氮区域。 热退火降低了无氮区域的宽度。 然后在整个半导体拓扑上生长可变厚度的氧化物层,并进行各向异性蚀刻,以在较宽的无氮区域上形成氧化物掩模。 然后去除不被氧化物掩模覆盖的栅极导体层的部分,留下宽度窄的无氮区域作为宽度低于光刻阈值的栅极导体。
    • 68. 发明授权
    • CMOS integrated circuit and method for implanting NMOS transistor areas prior to implanting PMOS transistor areas to optimize the thermal diffusivity thereof
    • CMOS集成电路和用于在注入PMOS晶体管区域之前注入NMOS晶体管区域以优化其热扩散率的方法
    • US06258646B1
    • 2001-07-10
    • US09149631
    • 1998-09-08
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H01L218238
    • H01L27/092H01L21/823814Y10S257/90
    • A transistor and a transistor fabrication method for forming an LDD structure in which the n-type dopants associated with an n-channel transistor are formed prior to the formation of the p-type dopants is presented. The n-type source/drain and LDD implants generally require higher activation energy (thermal anneal) than the p-type source/drain and LDD implants. The n-type arsenic source/drain implant, which has the lowest diffusivity and requires the highest temperature anneal, is performed first in the LDD process formation. Performing such a high temperature anneal first ensures minimum additional migration of subsequent, more mobile implants. Mobile implants associated with lighter and less dense implant species are prevalent in LDD areas near the channel perimeter. The likelihood of those implants moving into the channel is lessened by tailoring subsequent anneal steps to temperatures less than the source/drain anneal step.
    • 提出一种用于形成LDD结构的晶体管和晶体管制造方法,其中在形成p型掺杂剂之前形成与n沟道晶体管相关联的n型掺杂剂。 n型源极/漏极和LDD植入物通常需要比p型源极/漏极和LDD植入物更高的活化能(热退火)。 首先在LDD工艺形成中执行具有最低扩散率并且需要最高温度退火的n型砷源/漏极注入。 首先进行这样的高温退火可确保随后的更多移动式植入物的最小额外迁移。 与更轻和较不密集的种植体物种相关的移植植入物在通道周边附近的LDD区域是普遍的。 通过将后续退火步骤调整到低于源极/漏极退火步骤的温度,使得这些植入物进入通道的可能性降低。
    • 69. 发明授权
    • Use of sacrificial dielectric structure to form semiconductor device with a self-aligned threshold adjust and overlying low-resistance gate
    • 使用牺牲介电结构形成具有自对准阈值的半导体器件调整并覆盖低电阻栅极
    • US06200865B1
    • 2001-03-13
    • US09205443
    • 1998-12-04
    • Mark I. GardnerH. Jim Fulford, Jr.
    • Mark I. GardnerH. Jim Fulford, Jr.
    • H01L21336
    • H01L29/66537H01L21/28273H01L29/42324H01L29/66545H01L29/6659H01L29/66825
    • A semiconductor device is provided and formed using self-aligned low-resistance gates within a metal-oxide semiconductor (MOS) process. A sacrificial dielectric gate structure is formed on a semiconductor substrate instead of a conventional gate dielectric/gate conductor stack. After forming junction regions within a semiconductor substrate, the gate structure is removed to form a trench within a dielectric formed above the substrate. A low-resistance gate material can then be arranged within the trench, i.e., in the region removed of the gate conductor. The gate material can take various forms, including a single layer or multiple metal and/or dielectric layers interposed throughout the as-filled trench. The gate formation occurs after high temperature cycles often associated with activating the previously implanted junctions or growing gate dielectrics. Thus, low-temperature metals such as copper or copper alloys can be used.
    • 在金属氧化物半导体(MOS)工艺中,使用自对准的低电阻栅极提供并形成半导体器件。 在半导体衬底上形成牺牲电介质栅极结构,而不是传统的栅极介质/栅极导体堆叠。 在半导体衬底中形成结区之后,去除栅极结构,以在衬底之上形成的电介质内形成沟槽。 然后可以在沟槽内,即在去除栅极导体的区域中布置低电阻栅极材料。 栅极材料可以采取各种形式,包括插入整个填充沟槽中的单层或多个金属和/或介电层。 栅极形成发生在高温循环之后,通常与激活以前注入的结或生长的栅极电介质相关联。 因此,可以使用诸如铜或铜合金的低温金属。