会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Active three-axis attitude control system for a geostationary satellite
    • 用于地球卫星的主动三轴姿态控制系统
    • US5054719A
    • 1991-10-08
    • US417759
    • 1989-10-05
    • P. A. Alexandre Maute
    • P. A. Alexandre Maute
    • B64G1/28B64G1/24B64G1/36G05D1/08G09B9/52
    • B64G1/36B64G1/24G05D1/0883G09B9/52B64G1/288B64G1/361B64G1/363B64G1/365
    • An attitude control system for a stabilized geostationary satellite comprising at least one terrestrial detector (T.sub.1) and a stellar detector oriented towards the North further comprises:a processing subsystem for each of at least the normal mode (I) and the stationkeeping mode (II), adapted to be connected to the detectors and to actuators (11, 12, 13) and comprising a pre-processing module (14-16) adapted to determine for each axis i an angular offset .epsilon..sub.i between a measured angle determined from the detectors and a reference angle together with a control and correction module (18, 20) adapted to determine for each axis a corrective torque of the form:c=k.sub.i..epsilon..sub.i +h.sub.i..epsilon..sub.iwhere k.sub.i and h.sub.i are parameters specific to each axis and to each processing line,a speed .epsilon..sub.i measuring unit (24,25),and a mode selection unit (26) connecting the detectors to a selected processing line and that processing line to at least one actuator.
    • 一种用于稳定地球静止卫星的姿态控制系统,包括至少一个地面探测器(T1)和朝向北方的恒星探测器,进一步包括:用于至少正常模式(I)和驻留模式(II)中的每一个的处理子系统, ,适于连接到检测器和致动器(11,12,13),并且包括预处理模块(14-16),其适于为每个轴线i确定从检测器确定的测量角度之间的角度偏移εi 以及与控制和校正模块(18,20)一起的参考角,其适于为每个轴确定以下形式的校正扭矩:c = ki。 epsilon i +嗨 其中ki和hi是每个轴和每个处理线特有的参数,速度ε测量单元(24,25)和将检测器连接到选定的处理线的模式选择单元(26),并且该处理线 至少一个致动器。
    • 53. 发明授权
    • Method of orienting a synchronous satellite
    • 定向同步卫星的方法
    • US4776540A
    • 1988-10-11
    • US133249
    • 1987-12-10
    • Lawrence H. Westerlund
    • Lawrence H. Westerlund
    • B64G1/24B64G1/28B64G1/34B65D5/42B65D5/52G05D1/08G09B9/52
    • B65D5/4208B64G1/24B64G1/281B65D5/52G05D1/0883G09B9/52B64G1/285B64G1/34
    • The invention is a method of orienting a satellite in a geosynchronous orbit so as to direct a beam from an antenna mounted on the satellite to cover a desired target site, and pointing the beam axis at a desired bore site target. One embodiment of the method according to the invention includes a step of orienting the spin axis of a geosynchronous satellite at a direction angle which equals the inclination angle of the current orbital plane plus an adjustment or correction angle (.beta.), when the inclination angle is greater than zero. The correction angle is determined using one or both of the following equations:.beta.=BS-tan.sup.-1 {[ sin (bs-I)]/[6.61-cos (bs-I)]},or.beta.=.vertline.-(BS-tan.sup.-1 {[ sin (bs+I)]/[6.61-cos (bs+I)]}).vertline.,where, BS=the elevation angle of the bore site target in spacecraft coordinates, bs=the latitude of the bore site target, I=the inclination angle of the orbital plane with respect to the equatorial plane, and .beta.=the correction angle with respect to orbit-normal to point the axis of the beam at the desired bore site target. The step of orienting the satellite at the direction angle is performed by using thrusters. A magnetic torquing system could also be used.
    • 本发明是将卫星定向在地球同步轨道中的方法,以便将来自安装在卫星上的天线的波束引导到覆盖期望的目标地点,并将波束轴指向所需的孔位点目标。 根据本发明的方法的一个实施例包括以下步骤:当倾斜角度为倾斜角度时,将地球同步卫星的旋转轴定向在等于当前轨道平面的倾斜角加上调整或校正角度(β)的方向角度 大于零。 使用以下等式中的一个或两个来确定校正角度:β= BS-tan-1 {[sin(bs-1)] / [6.61-cos(bs-1)]}或β= | - (BS -an-1 {[sin(bs + I)] / [6.61-cos(bs + I)]})|,其中,BS =航天器坐标中孔径目标的仰角,bs = 钻孔位置目标I =轨道平面相对于赤道平面的倾斜角度,β=相对于轨道法线的修正角度,以将梁的轴线指向所需孔径目标点。 通过使用推进器来执行卫星在方位角定向的步骤。 也可以使用磁力扭矩系统。
    • 54. 发明授权
    • Star sightings by satellite for image navigation
    • 通过卫星进行星形瞄准用于图像导航
    • US4746976A
    • 1988-05-24
    • US867356
    • 1986-05-23
    • Ahmed A. KamelDonald E. EkmanJohn SavidesGerald J. Zwirn
    • Ahmed A. KamelDonald E. EkmanJohn SavidesGerald J. Zwirn
    • B64G1/36G01C21/02G01C21/24G06T1/00G09B9/52H04N7/18
    • G01C21/025G09B9/52
    • Stars are sensed by one or more instruments (1, 2) on board a three-axis stabilized satellite, for purposes of assisting in image navigation. A star acquistion computer (64), which may be located on the earth, commands the instrument mirror (33, 32) to slew just outside the limb of the earth or other celestial body around which the satellite is orbiting, to look for stars that have been cataloged in a star map stored within the computer (64). The instrument (1, 2) is commanded to dwell for a period of time equal to a star search window time, plus the maximum time the instrument (1, 2) takes to complete a current scan, plus the maximum time it takes for the mirror (33, 32) to slew to the star. When the satellite is first placed in orbit, and following first stationkeeping and eclipse, a special operation is performed in which the star-seeking instrument (1, 2) FOV is broadened. The elevation dimension can be broadened by performing repetitive star seeks; the azimuth dimension can be broadened by lengthening the commanded dwell times.
    • 星星由一个或多个仪器(1,2)感测在三轴稳定的卫星上,目的是协助图像导航。 可以位于地球上的星形采集计算机(64)命令仪器镜(33,32)正好在卫星绕轨道的地球或其他天体的肢体外面去寻找恒星 已经在存储在计算机内的星图中编目了(64)。 命令仪器(1,2)驻留一段时间等于星形搜索窗口时间,加上仪器(1,2)完成当前扫描所需的最长时间,加上最长时间 镜子(33,32)转向星星。 当卫星首次放置在轨道上,并且在第一次保存和日食之后,执行寻星仪器(1,2)FOV的特殊操作。 通过执行重复的星际搜索可以扩大海拔尺寸; 通过延长指令停留时间可以扩大方位角尺寸。
    • 60. 发明公开
    • Spacecraft attitude control using coupled thrusters
    • Lageregelung eines Raumfahrzeuges mit gekoppeltenSchubdüsen。
    • EP0334485A2
    • 1989-09-27
    • EP89301621.2
    • 1989-02-20
    • SPACE SYSTEMS / LORAL INC.
    • Garg, Subhash C.Bhat,Mahabaleshwar K. P.
    • G05D1/08B64G1/26
    • G09B9/52B64G1/26G05D1/0883
    • An attitude control system for a three-axis controlled spacecraft (1) in which the location of thrusters causes significant cross-coupling torques. A thruster command conditioning electronics module (TCCEM) (3) is positioned between the conventional roll, pitch, and yaw loop controllers (41-43) and the thrusters (61-63). The TCCEM (3) converts spacecraft-axis-based torque requirement signals (TDX, TDY, TDZ) emanating from the loop controllers (41-43) into scalar quantities (UL, UM, UN) that are input to thruster modulators (51-53) that turn on one or more thrusters of the thruster pairs (L,M,N). The TCCEM (3) causes the spacecraft (1) attitude to be adjusted as commanded by the torque requirement signals (TDX, TDY, TDZ) despite the presence of the cross-coupling. Two embodiments are illustrated: a working embodiment in which cross-coupling torques are produced about two axes (Y,Z), and a more general embodiment in which cross-coupling torques are present about all three axes (X,Y,Z).
    • 一种用于三轴控制航空器(1)的姿态控制系统,其中推进器的位置导致显着的交叉耦合扭矩。 推进器命令调节电子模块(TCCEM)(3)位于传统的滚动,俯仰和偏航环路控制器(41-43)和推进器(61-63)之间。 TCCEM(3)将从循环控制器(41-43)发出的基于航空器的轴的扭矩要求信号(TDX,TDY,TDZ)转换成标量(UL,UM,UN),输入到推进器调制器 (L,M,N)的推进器的一个或多个推进器。 尽管存在交叉耦合,TCCEM(3)使得航天器(1)的姿态被扭矩要求信号(TDX,TDY,TDZ)所指示。 示出了两个实施例:围绕两个轴线(Y,Z)产生交叉耦合转矩的工作实施例以及其中围绕所有三个轴线(X,Y,Z)存在交叉耦合转矩的更一般实施例。