会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Clustering images
    • 聚集图像
    • US08676803B1
    • 2014-03-18
    • US12612650
    • 2009-11-04
    • Thomas LeungJay Yagnik
    • Thomas LeungJay Yagnik
    • G06F17/30
    • G06F17/30268G06F17/30265
    • Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clustering images. In one aspect a system includes one or more computers configured to, for each of a plurality of digital images, associate extrinsic image-related information with each individual image, the extrinsic image-related information including text information and co-click data for the individual image, assign images from the plurality of images to one or more of the clusters of images based on the extrinsic information associated with each of the plurality of images, receive in the search system a user query from a user device, identify by operation of the search system one or more clusters of images that match the query, and provide one or more cluster results, where each cluster result provides information about an identified cluster.
    • 方法,系统和装置,包括在计算机存储介质上编码的用于聚类图像的计算机程序。 在一个方面,一种系统包括:一个或多个计算机,被配置为针对多个数字图像中的每一个,将每个独立图像相关联的外在图像相关信息,所述外在图像相关信息包括个体的文本信息和共同点击数据 图像,基于与所述多个图像中的每一个相关联的所述外在信息,将来自所述多个图像的图像分配给所述图像群集中的一个或多个,在所述搜索系统中从用户装置接收用户查询, 搜索系统与查询匹配的一个或多个图像集群,并提供一个或多个集群结果,其中每个集群结果提供关于所识别的集群的信息。
    • 53. 发明授权
    • Video enhancement for large scale applications
    • 适用于大规模应用的视频增强
    • US08537175B1
    • 2013-09-17
    • US12625822
    • 2009-11-25
    • George TodericiJay Yagnik
    • George TodericiJay Yagnik
    • G09G5/02G06T15/50G06T15/60
    • G06T5/008G06T2207/10016G06T2207/20012
    • A video enhancement server enhances a video. A scene segmentation module detects scene boundaries and segments the video into a number of scenes. For each frame in a given scene, a local white level and a local black level are determined from the distribution of pixel luminance values in the frame. A global white level and global black level are also determined from the distribution of pixel luminance values throughout the scene. Weighted white levels and black levels are determined for each frame as a weighted combination of the local and global levels. The video segmentation server then applies histogram stretching and saturation adjustment to each frame using the weighted white levels and black levels to determine enhanced pixel luminance values. An enhanced video comprising the enhanced pixel luminance values is stored to a video server for serving to clients.
    • 视频增强服务器增强视频。 场景分割模块检测场景边界并将视频分割成多个场景。 对于给定场景中的每个帧,从帧中的像素亮度值的分布确定局部白电平和局部黑电平。 全局白电平和全局黑电平也由整个场景中像素亮度值的分布确定。 为每个帧确定加权白电平和黑电平作为本地和全局电平的加权组合。 然后,视频分割服务器使用加权的白电平和黑电平对每个帧应用直方图拉伸和饱和度调整,以确定增强的像素亮度值。 包括增强像素亮度值的增强视频被存储到视频服务器以供客户端服务。
    • 55. 发明授权
    • Image enhancement through discrete patch optimization
    • 通过离散补丁优化的图像增强
    • US08396325B1
    • 2013-03-12
    • US12430812
    • 2009-04-27
    • Vivek KwatraMei HanJay Yagnik
    • Vivek KwatraMei HanJay Yagnik
    • G06K9/36
    • G06T7/33
    • An image processing system enhances the resolution of an original image using higher-resolution image data from other images. The image processing system defines a plurality of overlapping partitions for the original image, each partition defining a set of non-overlapping site patches. During an optimization phase, the system identifies, for site patches of the original images, label patches within related images that are of most relevance. During a rendering phase independent of the optimization phase, an output image with enhanced resolution is synthesized by substituting, for site patches of the original image, the identified relevant label patches from the related images.
    • 图像处理系统使用来自其他图像的更高分辨率图像数据增强原始图像的分辨率。 图像处理系统为原始图像定义多个重叠的分区,每个分区定义一组不重叠的站点块。 在优化阶段期间,系统会针对最相关的相关图像中的原始图像的贴片进行标签贴图。 在独立于优化阶段的渲染阶段期间,通过从相关图像中替换原始图像的位置贴片来识别识别的相关标签贴图来合成具有增强分辨率的输出图像。
    • 58. 发明授权
    • Vector transformation for indexing, similarity search and classification
    • 矢量变换索引,相似搜索和分类
    • US08165414B1
    • 2012-04-24
    • US13288706
    • 2011-11-03
    • Jay Yagnik
    • Jay Yagnik
    • G06K9/40G06E1/00
    • G06F17/3002G06K2009/4695
    • A feature vector is encoded into a sparse binary vector. The feature vector is retrieved, for example from storage or a feature vector generator. The feature vector represents a media object or other data object. One or more permutations are generated, the dimensionality of the generated permutations equivalent to the dimensionality of the feature vector. The permutations may be generated randomly or formulaically. The feature vector is permuted with the one or more permutations, creating one or more permuted feature vectors. The permuted feature vectors are truncated according to a selected window size. The indexes representing the maximum values of the permuted feature vectors are identified and encoded using one-hot encoding, producing one or more sparse binary vectors. The sparse binary vectors may be concatenated into a single sparse binary vector and stored. The sparse binary vector may be used in the similarity search, indexing or categorization of media objects.
    • 特征向量被编码成稀疏二进制向量。 例如从存储或特征向量生成器检索特征向量。 特征向量表示媒体对象或其他数据对象。 产生一个或多个排列,所产生的排列的维数等于特征向量的维数。 排列可以随机或公式地产生。 特征向量与一个或多个排列置换,创建一个或多个置换的特征向量。 根据所选择的窗口尺寸来截断重排的特征向量。 代表置换特征向量的最大值的索引使用单热编码进行识别和编码,产生一个或多个稀疏二进制向量。 稀疏二进制向量可以被级联成单个稀疏二进制向量并被存储。 稀疏二进制向量可以用于媒体对象的相似搜索,索引或分类。
    • 59. 发明授权
    • Training scoring models optimized for highly-ranked results
    • 培训评分模型针对高排名结果进行了优化
    • US08131786B1
    • 2012-03-06
    • US12624001
    • 2009-11-23
    • Samy BengioGal ChechikSergey IoffeJay Yagnik
    • Samy BengioGal ChechikSergey IoffeJay Yagnik
    • G06F17/00
    • G06K9/66G06F17/30244G06F17/3053G06K9/6267Y10S707/913Y10S707/915
    • Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training scoring models. One method includes storing data identifying a plurality of positive and a plurality of negative training images for a query. The method further includes selecting a first image from either the positive group of images or the negative group of images, and applying a scoring model to the first image. The method further includes selecting a plurality of candidate images from the other group of images, applying the scoring model to each of the candidate images, and then selecting a second image from the candidate images according to scores for the images. The method further includes determining that the scores for the first image and the second image fail to satisfy a criterion, updating the scoring model, and storing the updated scoring model.
    • 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于训练评分模型。 一种方法包括存储识别用于查询的多个正训练图像和多个负训练图像的数据。 该方法还包括从图像的正组或负图像组中选择第一图像,以及将评分模型应用于第一图像。 该方法还包括从另一组图像中选择多个候选图像,将评分模型应用于每个候选图像,然后根据图像的分数从候选图像中选择第二图像。 该方法还包括确定第一图像和第二图像的分数不能满足标准,更新评分模型,并存储更新的评分模型。
    • 60. 发明授权
    • Graph based sampling
    • 基于图形的抽样
    • US07827123B1
    • 2010-11-02
    • US11840139
    • 2007-08-16
    • Jay Yagnik
    • Jay Yagnik
    • G06F15/18
    • G06N99/005
    • An iterative method of sampling real world event data to generate a subset of data that is used for training a classifier. Graph Based Sampling uses an iterative process of evaluating and adding randomly selected event data sets to a training data set. In Graph Based Sampling, at each iteration, a two event data sets are randomly selected from a stored plurality of event data sets. A proximity function is used to generate a correlation or similarity value between each of these randomly selected real world event data sets, and the current training data set. One of the randomly selected event data sets is then added to the training data set based on the proximity value. This process of selection and addition is repeated until the subset of training set is a pre-determined size.
    • 对现实世界事件数据进行采样以生成用于训练分类器的数据子集的迭代方法。 基于图形的采样使用迭代过程来评估和添加随机选择的事件数据集到训练数据集。 在基于图形的抽样中,在每次迭代中,从存储的多个事件数据集中随机选择两个事件数据集。 接近函数用于在这些随机选择的真实世界事件数据集和当前训练数据集之间产生相关性或相似性值。 然后将随机选择的事件数据集之一基于接近度值加到训练数据集中。 重复该选择和添加过程,直到训练集的子集为预定大小。