会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 54. 发明申请
    • Plasma Induced Flow Control of Boundary Layer at Airfoil Endwall
    • 翼型端壁边界层等离子体诱导流量控制
    • US20110150653A1
    • 2011-06-23
    • US12640242
    • 2009-12-17
    • Matthew D. MontgomeryChing-Pang LeeChander Prakash
    • Matthew D. MontgomeryChing-Pang LeeChander Prakash
    • F01D5/14F01D9/02
    • F01D5/145F05D2270/172Y02T50/67Y02T50/673
    • Plasma generators (48, 49, 70, 71) in an endwall (25) of an airfoil (22) induce aerodynamic flows in directions (50) that modify streamlines (47) of the endwall boundary layer toward a streamline geometry (46) of a midspan region of the airfoil. This reduces vortices (42) generated by the momentum deficit of the boundary layer, increasing aerodynamic efficiency. The plasma generators may be arrayed around the leading edge as well as between two airfoils (22) in a gas turbine nozzle structure, and may be positioned at correction points (68) in streamlines caused by surface contouring (66) of the endwall. The plasma generators may be oriented to generate flow vectors (74) that combine with boundary layer flow vectors (72) to produce resultant flow vectors (76) in directions that reduce turbulence.
    • 翼型件(22)的端壁(25)中的等离子体发生器(48,49,70,71)在方向(50)上引起空气动力学流动,所述方向(50)将端壁边界层的流线(47)改变为流线几何形状(46) 翼型的跨跨区域。 这减少了由边界层的动量缺失产生的旋涡(42),从而提高了空气动力学效率。 等离子体发生器可以围绕前缘以及在燃气涡轮喷嘴结构中的两个翼型件(22)之间排列,并且可以位于由端壁的表面轮廓(66)引起的流线中的校正点(68)处。 等离子体发生器可以被定向以产生与边界层流向量(72)组合的流向量(74),以在减少湍流的方向上产生合成流向量(76)。
    • 59. 发明授权
    • Methods and system for cooling integral turbine shround assemblies
    • 冷却整体涡轮机组件的方法和系统
    • US07740444B2
    • 2010-06-22
    • US11565387
    • 2006-11-30
    • Ching-Pang LeeJames Harvey LaflenDustin Alfred PlackeGeorge Elliott MooreKatherine Jaynetorrence AndersenDaniel Verner Jones
    • Ching-Pang LeeJames Harvey LaflenDustin Alfred PlackeGeorge Elliott MooreKatherine Jaynetorrence AndersenDaniel Verner Jones
    • F01D25/12
    • F01D11/24F01D25/246F05D2260/201F05D2260/205Y02T50/671Y02T50/676
    • A method for cooling a turbine shroud assembly includes providing a turbine shroud assembly including a shroud segment having a leading edge, a trailing edge and a midsection defined therebetween. A shroud support circumferentially spans and supports the shroud segment. The shroud support includes a forward hanger coupled to the leading edge, a midsection hanger coupled to the midsection and an aft hanger coupled to the trailing edge. An annular shroud ring structure includes a midsection position control ring coupled to the midsection hanger and an aft position control ring coupled to the aft hanger. Cooling air is extracted from a compressor positioned upstream of the turbine shroud assembly. Cooling air is metered through the shroud support directly into only at least one active convection cooling zone defined between the shroud segment and the shroud support while substantially preventing cooling air from entering an inactive convection cooling zone positioned radially outwardly from the at least one active convection cooling zone and defined between the shroud support and the shroud ring structure and between the midsection position control ring and the aft position control ring.
    • 一种用于冷却涡轮机护罩组件的方法包括提供一种涡轮机护罩组件,其包括具有前缘,后缘和在其间限定的中部的护罩段。 护罩支撑件周向地跨越并支撑护罩段。 护罩支撑件包括联接到前缘的前悬挂器,联接到中部的中间吊架和耦合到后缘的后挂架。 环形护罩环结构包括连接到中间悬挂架的中央位置控制环和联接到后悬挂架的后部位置控制环。 从位于涡轮机罩组件上游的压缩机抽出冷却空气。 冷却空气通过护罩支撑件计量直接仅限于限定在护罩区段和护罩支撑件之间的至少一个主动对流冷却区域,同时基本上防止冷却空气进入从至少一个主动对流冷却器径向向外定位的非活动对流冷却区域 并且限定在护罩支撑件和护罩环结构之间以及中间位置控制环和后部位置控制环之间。