会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 49. 发明申请
    • BIFUNCTIONAL ANTIBIOTICS
    • 双功能抗体
    • WO01080863A1
    • 2001-11-01
    • PCT/US2001/040611
    • 2001-04-27
    • A61K31/70A61K31/704C07H15/224C07H15/232C07H15/234
    • C07H15/234A61K31/70A61K31/704A61K47/552C07H15/224C07H15/232Y02A50/473
    • Bifunctional antibiotics that target both bacterial RNA and resistance-causing enzymes are disclosed. The A-site of bacterial 16S rRNA serves as the target site for most aminoglycoside antibiotics. Resistance to this class of antibiotics is frequently developed by microbial enzymatic acetylation, phosphorylation or ribosylation of aminoglycosides, modifications that weaken their interactions with the target RNA. Using surface plasmon resonance (SPR), the binding affinity and stoichiometry of various aminoglycosides have been investigated and it was found that neamine, the key pharmacophore of the deoxystreptamine class of aminoglycosides, binds to the A-site in a two to one stoichiometry with a K >d K >d -fold increase in affinity). Antibiotic activities of the dimers were determined for several bacterial strains by the Kirby-Bauer method. The most active dimer, based on antibiotic activity, also showed the highest inhibition of in vitro translation (IC50 = 0.055 mu M). The latter assay was developed in order to correlate the relationship between SPR-based affinity and translation inhibition. By these combined methods, transport limitations for the semisynthetic aminoglycosides as well as non-ribosomally based antibiotic activity could be determined. Further analysis of these dimers as substrates for aminoglycoside modifying-enzymes identified a neamine dimer that was a potent inhibitor (Kis = 0.1 mu M) of the APH(2'') activity of the bifunctional enzyme AAC(6'')-APH(2''), the primary enzyme responsible for high level gentamicin C resistance in several bacterial strains.
    • 公开了靶向细菌RNA和产生抗性的酶的双功能抗生素。 细菌16S rRNA的A位点作为大多数氨基糖苷类抗生素的靶位点。 通常通过微生物酶促乙酰化,氨基糖苷类磷酸化或核糖基化,削弱其与靶RNA的相互作用的修饰来发展抗这类抗生素的抗性。 使用表面等离子体共振(SPR),已经研究了各种氨基糖苷类的结合亲和力和化学计量学,并且发现神经胺是氨基糖苷类的脱氧链霉胺类的关键药效​​团,以2比1的化学计量与A位点结合 每个结合位点的K > d <10μM。 制备了一种神经胺二聚体文库,并通过SPR测定了它们对16S rRNA A位点的亲和力,对于最佳的二聚体(相似的10 3 3倍)增加了KI <= 40nM 亲和力)。 通过Kirby-Bauer方法测定了几种细菌菌株对二聚体的抗生素活性。 基于抗生素活性的最活跃的二聚体也显示了体外翻译的最高抑制(IC50 =0.055μM)。 开发了后一种测定法,以便将基于SPR的亲和力和翻译抑制之间的关系相关联。 通过这些组合方法,可以确定半合成氨基糖苷类的运输限制以及非核糖体基抗生素活性。 作为氨基糖苷修饰酶的底物的这些二聚体的进一步分析鉴定了二胺,其是双功能酶AAC(6“)-APH的APH(2”)活性的有效抑制剂(Kis =0.1μM) 2“),是几种细菌菌株中高水平庆大霉素C抗性的主要酶。