会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 47. 发明公开
    • LINE-BASED IMAGE REGISTRATION AND CROSS-IMAGE ANNOTATION DEVICES, SYSTEMS AND METHODS
    • VOLLSCHNITTBILDREGISTRIERUNG UNDBILDÜBERGREIFENDEANNOTATIONSVORRICHTUNGEN,-SYSTEME UND-EXFAHREN
    • EP3053139A1
    • 2016-08-10
    • EP14780824.0
    • 2014-09-30
    • Ventana Medical Systems, Inc.
    • CHUKKA, SrinivasSARKAR, AnindyaYUAN, Quan
    • G06T7/00
    • The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images. The basis for alignment may be a line-based registration process, wherein sets of lines are computed on the boundary regions computed for the two images, where the boundary regions are obtained using information from two domains—soft-weighted foreground images and gradient magnitude images. The binary mask image, based on whose boundary the line features are computed, may be generated by combining two binary masks—a first binary mask is obtained on thresholding a soft-weighted (continuous valued) foreground image, which is computed based on the stain content in an image, while a second binary mask is obtained after thresholding a gradient magnitude domain image, where the gradient is computed from the grayscale image obtained from the color image.
    • 本公开涉及用于图像注册和注释的装置,系统和方法。 这些设备包括用于在公共网格上对齐整个幻灯片数字图像的计算机软件产品,并且基于匹配的组织结构将注释从一个对齐的图像传送到另一个对齐的图像。 这些系统包括计算机实现的系统,例如工作站和网络计算机,用于完成基于组织结构的图像配准和跨图像注释。 所述方法包括基于组织结构对准在公共网格上对应于相邻组织部分的数字图像并将注释从相邻组织图像之一转移到相邻组织图像中的另一组织的处理。 对准的基础可以是基于行的注册过程,其中在针对两个图像计算的边界区域上计算行集合,其中使用来自两个域的信息获得边界区域 - 软加权前景图像和梯度幅度图像 。 可以通过组合两个二进制掩码来生成基于其边界计算线特征的二进制掩码图像 - 在阈值化软加权(连续值)前景图像上获得第一二进制掩码,其基于该染色来计算 而在阈值化梯度幅度域图像之后获得第二二进制掩码,其中从从彩色图像获得的灰度图像中计算梯度。
    • 50. 发明公开
    • IMAGE ANALYSIS SYSTEM USING CONTEXT FEATURES
    • 使用上下文特征的图像分析系统
    • EP3178035A2
    • 2017-06-14
    • EP15748219.1
    • 2015-08-04
    • Ventana Medical Systems, Inc.
    • CHUKKA, SrinivasNIE, Yao
    • G06K9/00G06K9/62
    • The present disclosure relates, among other things, to an image analysis method for identifying objects belonging to a particular objet class in a digital image of a biological sample. The method may include, among other things, analyzing the digital image for automatically or semi-automatically identifying objects in the digital image; analyzing the digital image for identifying, for each object, a first object feature value of a first object feature of said object; analyzing the digital image for computing one or more first context feature values; inputting both the first object feature value of each of the objects in the digital image and the first context feature value of said digital image into a first classifier; and executing the first classifier.
    • 本公开涉及一种用于识别属于生物样本的数字图像(102-108)中的特定对象类的对象的图像分析系统,所述系统包括处理器和存储器,所述存储器包括可解释指令,所述可解释指令当被执行时 所述处理器使所述处理器执行包括以下的方法: - 分析(602)所述数字图像以自动或半自动地识别所述数字图像中的物体; - 分析(604)数字图像,用于针对每个对象识别所述对象的第一对象特征的第一对象特征值(202,702); - - 分析(606)用于计算一个或多个第一上下文特征值(204,704)的数字图像,每个第一上下文特征值是第一对象特征值或多个对象中的对象的特征值的导数 数字图像或者是数字图像的多个像素的导数; - 将数字图像中的每个对象的第一对象特征值和所述数字图像的第一上下文特征值输入(608)到第一分类器(210,710)中; 以及 - 执行(610)所述第一分类器,所述第一分类器由此使用每个对象的所述第一对象特征值和所述一个或多个第一上下文特征值作为输入以用于针对所述对象自动确定第一似然性(216,714) 作为对象类的成员的所述对象的对象。