会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 43. 发明授权
    • Process of forming an electronic device including a semiconductor island over an insulating layer
    • 在绝缘层上形成包括半导体岛的电子器件的工艺
    • US07419866B2
    • 2008-09-02
    • US11375893
    • 2006-03-15
    • Mariam G. SadakaBich-Yen NguyenVoon-Yew Thean
    • Mariam G. SadakaBich-Yen NguyenVoon-Yew Thean
    • H01L21/8238
    • H01L21/32H01L21/02238H01L21/02255H01L21/31662H01L21/84
    • A process of forming an electronic device can include forming a patterned oxidation-resistant layer over a semiconductor layer that overlies a substrate, and patterning the semiconductor layer to form a semiconductor island. The semiconductor island includes a first surface and a second surface opposite the first surface, and the first surface lies closer to the substrate, as compared to the second surface. The process can also include forming an oxidation-resistant material along a side of the semiconductor island or selectively depositing a semiconductor material along a side of the semiconductor island. The process can further include exposing the patterned oxidation-resistant layer and the semiconductor island to an oxygen-containing ambient, wherein a first portion of the semiconductor island along the first surface is oxidized during exposing the patterned oxidation-resistant layer, the semiconductor island, and the oxidation-resistant material to an oxygen-containing ambient.
    • 形成电子器件的方法可以包括在覆盖在衬底上的半导体层上形成图案化的抗氧化层,并且图案化半导体层以形成半导体岛。 半导体岛包括与第一表面相对的第一表面和第二表面,并且第一表面与第二表面相比更靠近基底。 该方法还可以包括沿着半导体岛的一侧形成耐氧化材料或者沿半导体岛的一侧选择性地沉积半导体材料。 该方法还可以包括将图案化的抗氧化层和半导体岛暴露于含氧环境中,其中沿着第一表面的半导体岛的第一部分在曝光图案化的抗氧化层,半导体岛, 并将抗氧化材料转化为含氧环境。
    • 44. 发明申请
    • SELECTIVE STRESS RELAXATION BY AMORPHIZING IMPLANT IN STRAINED SILICON ON INSULATOR INTEGRATED CIRCUIT
    • 绝缘子集成电路中应变硅中的植入物的选择性应力放松
    • US20080124858A1
    • 2008-05-29
    • US11462773
    • 2006-08-07
    • Bich-Yen NguyenVoon-Yew Thean
    • Bich-Yen NguyenVoon-Yew Thean
    • H01L21/8238
    • H01L21/84H01L21/823807H01L21/823814
    • A semiconductor fabrication process includes forming an NMOS gate electrode overlying a biaxially strained NMOS active region and forming a PMOS gate electrode overlying a biaxially strained PMOS active region. Amorphous silicon is created in a PMOS source/drain region to reduce PMOS channel direction tensile stress. A PMOS source/drain implant is performed in the amorphous PMOS source/drain. Creating amorphous silicon in the PMOS source/drain may include implanting an electrically neutral species (e.g., Ge, Ga, or Xe). The wafer then may be annealed and a second PMOS amorphizing implant performed. PMOS halo, source/drain extension, and deep source/drain implants may then be performed. Following the first amorphizing implant, a sacrificial compressive stressor may be formed over the PMOS region, the wafer annealed to recrystallize the amorphous PMOS region, and the compressive stressor removed. NMOS source/drain implants may be performed without a preceding amorphizing implant or with a low energy amorphizing implant.
    • 半导体制造工艺包括形成覆盖双轴应变NMOS有源区的NMOS栅电极,并形成覆盖双轴应变PMOS有源区的PMOS栅电极。 在PMOS源极/漏极区域中产生非晶硅以减少PMOS沟道方向的拉伸应力。 在非晶PMOS源极/漏极中执行PMOS源极/漏极注入。 在PMOS源极/漏极中产生非晶硅可以包括植入电中性物质(例如Ge,Ga或Xe)。 然后可以对晶片进行退火,并执行第二个PMOS非晶化注入。 然后可以执行PMOS光晕,源极/漏极延伸和深源/漏极注入。 在第一非晶化植入物之后,可以在PMOS区域上形成牺牲压应力器,晶片退火以使非晶态PMOS区域重结晶,并且去除压应力。 可以在没有前面的非晶化植入物或低能量非晶化植入物的情况下进行NMOS源极/漏极植入物。
    • 45. 发明申请
    • SELECTIVE UNIAXIAL STRESS MODIFICATION FOR USE WITH STRAINED SILICON ON INSULATOR INTEGRATED CIRCUIT
    • 绝缘子集成电路上使用应变硅的选择性单相应力变形
    • US20080014688A1
    • 2008-01-17
    • US11428953
    • 2006-07-06
    • Voon-Yew TheanBich-Yen NguyenDa Zhang
    • Voon-Yew TheanBich-Yen NguyenDa Zhang
    • H01L21/8234
    • H01L21/823807H01L21/823814H01L21/84H01L27/1203H01L29/66628H01L29/66636H01L29/7843H01L29/7848
    • A semiconductor fabrication process includes masking a first region, e.g., an NMOS region, of a semiconductor wafer, e.g., a biaxial, tensile strained silicon on insulator (SOI) wafer and creating recesses in source/drain regions of a second wafer region, e.g., a PMOS region. The wafer is then annealed in an ambient that promotes migration of silicon. The source/drain recesses are filled with source/drain structures, e.g., by epitaxial growth. The anneal ambient may include a hydrogen bearing species, e.g., H2 or GeH2, maintained at a temperature in the range of approximately 800 to 1000° C. The second region may be silicon and the source/drain structures may be silicon germanium. Creating the recesses may include creating shallow recesses with a first etch process, performing an amorphizing implant to create an amorphous layer, performing an inert ambient anneal to recrystallize the amorphous layer, and deepening the shallow recesses with a second etch process.
    • 半导体制造工艺包括掩蔽半导体晶片的第一区域(例如,NMOS区域),例如双轴拉伸应变绝缘体上硅(SOI)晶片,并在第二晶片区域的源/漏区域中产生凹陷,例如 ,PMOS区域。 然后将晶片在促进硅迁移的环境中退火。 源极/漏极凹槽用源极/漏极结构填充,例如通过外延生长。 退火环境可以包括保持在约800至1000℃范围内的温度的含氢物质,例如H 2 H 2或GeH 2 H 2。第二区域 可以是硅,并且源极/漏极结构可以是硅锗。 创建凹槽可以包括用第一蚀刻工艺创建浅凹槽,执行非晶化注入以产生非晶层,执行惰性环境退火以使非晶层重结晶,以及用第二蚀刻工艺加深浅凹槽。
    • 47. 发明授权
    • Method for making a semiconductor device with strain enhancement
    • 制造具有应变增强的半导体器件的方法
    • US07282415B2
    • 2007-10-16
    • US11092291
    • 2005-03-29
    • Da ZhangBich-Yen NguyenVoon-Yew TheanYasuhito ShihoVeer Dhandapani
    • Da ZhangBich-Yen NguyenVoon-Yew TheanYasuhito ShihoVeer Dhandapani
    • H01L21/336
    • H01L29/7848H01L29/165H01L29/66545H01L29/66628H01L29/66636
    • A semiconductor device with strain enhancement is formed by providing a semiconductor substrate and an overlying control electrode having a sidewall. An insulating layer is formed adjacent the sidewall of the control electrode. The semiconductor substrate and the control electrode are implanted to form first and second doped current electrode regions, a portion of each of the first and second doped current electrode regions being driven to underlie both the insulating layer and the control electrode in a channel region of the semiconductor device. The first and second doped current electrode regions are removed from the semiconductor substrate except for underneath the control electrode and the insulating layer to respectively form first and second trenches. An insitu doped material containing a different lattice constant relative to the semiconductor substrate is formed within the first and second trenches to function as first and second current electrodes of the semiconductor device.
    • 通过提供半导体衬底和具有侧壁的上覆控制电极来形成具有应变增强的半导体器件。 在控制电极的侧壁附近形成绝缘层。 注入半导体衬底和控制电极以形成第一和第二掺杂电流电极区域,第一和第二掺杂电流电极区域中的每一个的一部分被驱动以在第一和第二掺杂电流电极区域的沟道区域中的绝缘层和控制电极之下 半导体器件。 第一和第二掺杂电流电极区域除了在控制电极和绝缘层之下除去分别形成第一和第二沟槽的半导体衬底外。 在第一和第二沟槽内形成有相对于半导体衬底具有不同晶格常数的原位掺杂材料,用作半导体器件的第一和第二电流电极。
    • 50. 发明授权
    • Method for forming a semiconductor structure having a strained silicon layer
    • 用于形成具有应变硅层的半导体结构的方法
    • US07811382B2
    • 2010-10-12
    • US11421009
    • 2006-05-30
    • Mariam G. SadakaAlexander L. BarrBich-Yen NguyenVoon-Yew TheanTed R. White
    • Mariam G. SadakaAlexander L. BarrBich-Yen NguyenVoon-Yew TheanTed R. White
    • C30B21/02
    • C30B29/52C30B25/02H01L21/0245H01L21/0251H01L21/02532H01L21/0262H01L21/76254
    • A wafer having a silicon layer that is strained is used to form transistors. The silicon layer is formed by first forming a silicon germanium (SiGe) layer of at least 30 percent germanium that has relaxed strain on a donor wafer. A thin silicon layer is epitaxially grown to have tensile strain on the relaxed SiGe layer. The amount tensile strain is related to the germanium concentration. A high temperature oxide (HTO) layer is formed on the thin silicon layer by reacting dichlorosilane and nitrous oxide at a temperature of preferably between 800 and 850 degrees Celsius. A handle wafer is provided with a supporting substrate and an oxide layer that is then bonded to the HTO layer. The HTO layer, being high density, is able to hold the tensile strain of the thin silicon layer. The relaxed SiGe layer is cleaved then etched away to expose the thin silicon layer. A low temperature silicon layer is then epitaxially grown with tensile strain, correlated to the tensile strain of the thin silicon layer, on the thin silicon layer using trisilane at a temperature preferably not in excess of 500 degrees Celsius. The resulting tensile strain, correlated to the strain of the thin silicon layer, is thus also correlated to the germanium concentration of the relaxed SiGe layer. The thickness of the low temperature silicon layer, using the trisilane at low temperature, is significantly greater than what would normally be expected for a silicon layer of that tensile strain.
    • 具有应变的硅层的晶片用于形成晶体管。 通过首先在施主晶片上形成具有松弛应变的至少30%的锗的锗锗(SiGe)层来形成硅层。 外延生长薄硅层以在松弛的SiGe层上具有拉伸应变。 拉伸应变量与锗浓度有关。 优选在800至850摄氏度之间的温度下,通过使二氯硅烷和一氧化二氮反应,在薄硅层上形成高温氧化物(HTO)层。 手柄晶片设置有支撑基板和氧化物层,然后将其结合到HTO层。 高密度的HTO层能够保持薄硅层的拉伸应变。 松弛的SiGe层被切割,然后蚀刻掉以露出薄的硅层。 然后在优选不超过500摄氏度的温度下使用丙硅烷在薄硅层上外延生长与低硅薄层的拉伸应变相关的低温硅层。 因此,与薄硅层的应变相关的所得拉伸应变也与弛豫SiGe层的锗浓度相关。 在低温下使用丙硅烷的低温硅层的厚度明显大于该拉伸应变的硅层通常预期的厚度。