会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Multi-modal tone-mapping of images
    • 图像的多模式色调映射
    • US08290295B2
    • 2012-10-16
    • US12396590
    • 2009-03-03
    • Antonio CriminisiEvgeny SalnikovToby Sharp
    • Antonio CriminisiEvgeny SalnikovToby Sharp
    • G06K9/38
    • G06K9/38G06T5/009G06T5/40G06T2207/10032G06T2207/10081G06T2207/20208G06T2207/30004G06T2207/30181
    • A system for multi-modal mapping of images is described. Embodiments are described where the image mapping system is used for visualizing high dynamic range images such as medical images, satellite images, high dynamic range photographs and the like and also for compressing such images. In examples, high bit-depth images are tone-mapped for display on equipment of lower bit-depth without loss of detail. In embodiments, the image mapping system computes statistics describing an input image and fits a multi-modal model to those statistics efficiently. In embodiments, the multi-modal model is a Gaussian mixture model and a plurality of sigmoid functions corresponding to the multi-modal model are obtained. In an embodiment the sigmoid functions are added to form a tone-mapping function which is used to transform a high bit-depth image such as 16 or 12 bits per pixel to a low bit-depth image such as 8 bits per pixel.
    • 描述了用于图像的多模态映射的系统。 描述实施例,其中图像映射系统用于可视化诸如医学图像,卫星图像,高动态范围照片等的高动态范围图像,并且还用于压缩这样的图像。 在示例中,高位深图像被色调映射以便在较低位深度的设备上显示而不损失细节。 在实施例中,图像映射系统计算描述输入图像的统计量,并将多模态模型有效地适应于这些统计。 在实施例中,多模态模型是高斯混合模型,并且获得对应于多模态模型的多个S形函数。 在一个实施例中,添加S形功能以形成色调映射功能,其用于将诸如每像素16或12位的高位深度图像变换为诸如每像素8位的低位深度图像。
    • 43. 发明申请
    • Automatic Identification of Image Features
    • 图像特征的自动识别
    • US20110188715A1
    • 2011-08-04
    • US12697785
    • 2010-02-01
    • Jamie Daniel Joseph ShottonAntonio Criminisi
    • Jamie Daniel Joseph ShottonAntonio Criminisi
    • G06K9/00
    • G06K9/00G06K9/6282G06K2209/051G06T7/0012
    • Automatic identification of image features is described. In an embodiment, a device automatically identifies organs in a medical image using a decision forest formed of a plurality of distinct, trained decision trees. An image element from the image is applied to each of the trained decision trees to obtain a probability of the image element representing a predefined class of organ. The probabilities from each of the decision trees are aggregated and used to assign an organ classification to the image element. In another embodiment, a method of training a decision tree to identify features in an image is provided. For a selected node in the decision tree, a training image is analyzed at a plurality of locations offset from a selected image element, and one of the offsets is selected based on the results of the analysis and stored in association with the node.
    • 描述图像特征的自动识别。 在一个实施例中,设备使用由多个不同的训练有素的决策树形成的决策树,自动识别医学图像中的器官。 将来自图像的图像元素应用于每个经训练的决策树,以获得表示预定类别器官的图像元素的概率。 来自每个决策树的概率被聚合并用于将分类器官分类给图像元素。 在另一个实施例中,提供了一种训练决策树以识别图像中的特征的方法。 对于决策树中的选定节点,在与所选择的图像元素偏移的多个位置处分析训练图像,并且基于分析的结果来选择偏移中的一个,并且与节点相关联地存储。
    • 44. 发明申请
    • Multi-Modal Tone-Mapping of Images
    • 图像的多模态色调映射
    • US20100226547A1
    • 2010-09-09
    • US12396590
    • 2009-03-03
    • Antonio CriminisiEvgeny SalnikovToby Sharp
    • Antonio CriminisiEvgeny SalnikovToby Sharp
    • G06K9/00
    • G06K9/38G06T5/009G06T5/40G06T2207/10032G06T2207/10081G06T2207/20208G06T2207/30004G06T2207/30181
    • A system for multi-modal mapping of images is described. Embodiments are described where the image mapping system is used for visualizing high dynamic range images such as medical images, satellite images, high dynamic range photographs and the like and also for compressing such images. In examples, high bit-depth images are tone-mapped for display on equipment of lower bit-depth without loss of detail. In embodiments, the image mapping system computes statistics describing an input image and fits a multi-modal model to those statistics efficiently. In embodiments, the multi-modal model is a Gaussian mixture model and a plurality of sigmoid functions corresponding to the multi-modal model are obtained. In an embodiment the sigmoid functions are added to form a tone-mapping function which is used to transform a high bit-depth image such as 16 or 12 bits per pixel to a low bit-depth image such as 8 bits per pixel.
    • 描述了用于图像的多模态映射的系统。 描述实施例,其中图像映射系统用于可视化诸如医学图像,卫星图像,高动态范围照片等的高动态范围图像,并且还用于压缩这样的图像。 在示例中,高位深图像被色调映射以便在较低位深度的设备上显示而不损失细节。 在实施例中,图像映射系统计算描述输入图像的统计量,并将多模态模型有效地适应于这些统计。 在实施例中,多模态模型是高斯混合模型,并且获得对应于多模态模型的多个S形函数。 在一个实施例中,添加S形功能以形成色调映射功能,其用于将诸如每像素16或12位的高位深度图像变换为诸如每像素8位的低位深度图像。
    • 50. 发明授权
    • Semi-supervised random decision forests for machine learning using mahalanobis distance to identify geodesic paths
    • 使用马哈拉诺比斯距离的机器学习的半监督随机决策树来识别测地线
    • US09519868B2
    • 2016-12-13
    • US13528876
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph Shotton
    • Antonio CriminisiJamie Daniel Joseph Shotton
    • G06N99/00G06N7/00G06N5/02
    • G06N99/005G06N5/02G06N7/005
    • Semi-supervised random decision forests for machine learning are described, for example, for interactive image segmentation, medical image analysis, and many other applications. In examples, a random decision forest comprising a plurality of hierarchical data structures is trained using both unlabeled and labeled observations. In examples, a training objective is used which seeks to cluster the observations based on the labels and similarity of the observations. In an example, a transducer assigns labels to the unlabeled observations on the basis of the clusters and certainty information. In an example, an inducer forms a generic clustering function by counting examples of class labels at leaves of the trees in the forest. In an example, an active learning module identifies regions in a feature space from which the observations are drawn using the clusters and certainty information; new observations from the identified regions are used to train the random decision forest.
    • 描述了用于机器学习的半监督随机决策树,例如用于交互式图像分割,医学图像分析和许多其他应用。 在示例中,使用未标记和标记的观察来训练包括多个分级数据结构的随机决策林。 在实例中,使用了一个训练目标,其目的是根据观察结果的标签和相似性对观测进行聚类。 在一个示例中,传感器基于集群和确定性信息将标签分配给未标记的观察。 在一个例子中,诱导者通过计算森林中树的树叶上的类标签的示例来形成通用聚类函数。 在一个示例中,主动学习模块识别特征空间中的区域,使用聚类和确定性信息从中绘制观察值; 来自确定地区的新观察用于训练随机决策林。