会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明公开
    • VERFAHREN UND ANORDNUNG ZUM PRÜFEN EINES FAHRZEUGUNTERBODENS EINES KRAFTFAHRZEUGES
    • VERFAHREN UND ANORDNUNG ZUMPRÜFENEINES FAHRZEUGUNTERBODENS EINES KRAFTFAHRZEUGES
    • EP2870765A1
    • 2015-05-13
    • EP13731302.9
    • 2013-06-11
    • Robert Bosch GmbH
    • NOBIS, GuenterTAKAMI, MasatoUFFENKAMP, Volker
    • H04N7/18
    • The invention relates to a method for testing a vehicle underbody (U) of a motor vehicle (10), involving the following method steps: acquiring (S1) at least one image (KFa1, KFb1, KFc1, KFd1) of at least one region of the vehicle underbody (U) of the motor vehicle (10) by means of a camera device (102a, 102b, 102c, 102d); generating (S2) a three-dimensional depth image with the aid of the at least one acquired image (KFa1, KFb1, KFc1, KFd1) of the at least one region of the vehicle underbody (U) of the motor vehicle (10); and testing (S3) the at least one region of the vehicle underbody (U) of the motor vehicle (10) with the aid of the generated three-dimensional depth image of the vehicle underbody (U) by means of optical image recognition.
    • 一种用于测试机动车辆的车身底部的方法,包括:使用照相机装置记录机动车辆的车辆底部的至少一个区域的至少一个图像; 借助于机动车辆的车辆底部的至少一个区域的至少一个记录图像产生三维深度图像; 并借助于所制造的使用光学图像识别的车辆底盘的三维深度图像来测试机动车辆的车辆底部的至少一个区域。
    • 45. 发明公开
    • VORRICHTUNG ZUM BESTIMMEN DER RAD- UND/ODER ACHSGEOMETRIE VON KRAFTFAHRZEUGEN
    • VORRICHTUNG ZUM BESTIMMEN DER RAD- UND / ODER ACHSGEOMETRIE VON KRAFTFAHRZEUGEN
    • EP1042643A1
    • 2000-10-11
    • EP98966219.2
    • 1998-12-21
    • ROBERT BOSCH GMBH
    • NOBIS, GuenterUFFENKAMP, Volker
    • G01B11/275G06T7/00
    • G01B11/275G01B2210/146G01B2210/16G01B2210/20G01B2210/30G01B2210/303
    • The invention relates to a device for determining the wheel and/or axle geometry of motor vehicles in a measuring space, using an optical measuring device which comprises at least two image-recording devices and from at least two different angles detects a marker device including at least one wheel feature located on each wheel (5), and an analysis device. The device is relatively easy to construct and operate. Data relating to wheel and axle geometry are obtained by the fact that the marker device (3,4, 7,8) comprises at least one bodywork feature (7) and one reference feature system (3) comprising at least three reference features (4). The measuring space is fixed between the reference marker system and the road surface plane. The position of the reference features (4) in the measuring space is known to the analysis device. Detection by the marker device (3,4, 7,8) is carried out while the motor vehicle drives past, whereby the at least one wheel feature (8) is detected in at least three different rotation positions of the wheel (5) for determining a wheel plane and the at least one bodywork feature (7) is detected simultaneously so as to determine the vehicle movement coordinates. Using the analysis device at least the wheel and/or axle geometry can be determined from the relative position of the wheel plane to the motor vehicle coordinates.
    • 本发明涉及一种用于使用包括至少两个图像记录装置的光学测量装置并且从至少两个不同的角度检测标记装置的用于在测量空间中确定机动车辆的车轮和/或轴几何形状的装置,所述标记装置包括在 位于每个车轮(5)上的至少一个车轮特征以及分析装置。 该设备相对容易构建和操作。 通过标记装置(3,4,7,8)包括至少一个车身特征(7)和一个包括至少三个参考特征(4)的参考特征系统(3)的事实来获得关于车轮和车轴几何形状的数据 )。 测量空间固定在参考标记系统和路面平面之间。 分析装置已知参考特征(4)在测量空间中的位置。 在机动车驶过时执行标记装置(3,4,7,8)的检测,由此在车轮(5)的至少三个不同的旋转位置中检测至少一个车轮特征(8),用于 确定车轮平面并同时检测至少一个车身特征(7)以确定车辆移动坐标。 使用分析装置至少可以根据车轮平面与机动车辆坐标的相对位置来确定车轮和/或车轴几何结构。
    • 49. 发明公开
    • VERFAHREN ZUM KALIBRIEREN EINES MESSPLATZES ZUR FAHRZEUGVERMESSUNG
    • 方法校准试验区用于测定车辆
    • EP2616767A1
    • 2013-07-24
    • EP11755282.8
    • 2011-07-21
    • Robert Bosch GmbH
    • WAGMANN, ChristianUFFENKAMP, Volker
    • G01B11/275G01B21/04
    • G01B11/14G01B11/2755G01B21/042G01B2210/12
    • A method for calibrating a measuring system for vehicle measurement, with a measuring plane (5) for receiving a vehicle to be measured and two measuring sensors (MW1, MW2), wherein each of the measuring sensors (MW1, MW2) has at least two camera systems (KV1, KH1, KV2, KH2), comprises the steps of: positioning at least four measuring panels (VL, VR, HL, HR) on the measuring plane (4); orienting the measuring sensors (MW1, MW2) in such a manner that at least one of the measuring panels (VL, VR, HL, HR) is respectively in the field of vision of each camera system (KV1, KH1, KV2, KH2) and each of the measuring panels (VL, VR, HL, HR) is in the field of vision of at least one of the camera systems (KV1, KH1, KV2, KH2); carrying out a first measuring step which involves recording images of the measuring panels (VL, VR, HL, HR) using the camera systems (KV1, KH1, KV2, KH2); interchanging the two measuring sensors (MW1, MW2); carrying out a second measuring step which involves recording images of the measuring panels (VL, VR, HL, HR) using the interchanged camera systems (KV1, KH1, KV2, KH2); determining and comparing positions of the measuring panels (VL, VR, HL, HR) from the images recorded in the first and second measuring steps; calculating at least one correction value (RSL, RSR) from the difference between the positions of the measuring panels (VL, VR, HL, HR) which have been determined from the images recorded in the first and second measuring steps.