会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明申请
    • Single transistor memory cell with reduced recombination rates
    • 具有降低复合率的单晶体管存储单元
    • US20070001222A1
    • 2007-01-04
    • US11172569
    • 2005-06-30
    • Marius OrlowskiJames Burnett
    • Marius OrlowskiJames Burnett
    • H01L27/12
    • H01L29/785H01L27/108H01L27/10802H01L27/10826H01L29/7841H01L29/78687
    • A semiconductor fabrication method includes forming a semiconductor structure including source/drain regions disposed on either side of a channel body wherein the source/drain regions include a first semiconductor material and wherein the channel body includes a migration barrier of a second semiconductor material. A gate dielectric overlies the semiconductor structure and a gate module overlies the gate dielectric. An offset in the majority carrier potential energy level between the first and second semiconductor materials creates a potential well for majority carriers in the channel body. The migration barrier may be a layer of the second semiconductor material over a first layer of the first semiconductor material and under a capping layer of the first semiconductor material. In a one dimensional migration barrier, the migration barrier extends laterally through the source/drain regions while, in a two dimensional barrier, the barrier terminates laterally at boundaries defined by the gate module.
    • 半导体制造方法包括形成半导体结构,该半导体结构包括设置在沟道体两侧的源极/漏极区,其中源极/漏极区包括第一半导体材料,并且其中沟道主体包括第二半导体材料的迁移势垒。 栅极电介质覆盖半导体结构,并且栅极模块覆盖在栅极电介质上。 在第一和第二半导体材料之间的多数载流子势能级中的偏移对于通道体中的多数载流子产生潜在的井。 迁移障碍物可以是第一半导体材料的第一层上的第二半导体材料层和第一半导体材料的覆盖层之下的层。 在一维迁移屏障中,迁移屏障横向延伸穿过源极/漏极区域,而在二维屏障中,屏障在由栅极模块限定的边界处横向终止。
    • 42. 发明申请
    • Method for forming an electronic device
    • 电子设备的形成方法
    • US20060286736A1
    • 2006-12-21
    • US11152931
    • 2005-06-15
    • Marius OrlowskiBrian Goolsby
    • Marius OrlowskiBrian Goolsby
    • H01L21/8238
    • H01L21/84H01L21/823418
    • An electronic device is formed by forming a first and second layer overlying a plurality of transistor locations. An etch is performed to remove portions of the first and second layers to expose a portion of the plurality of transistor locations, while other portions of the first and second layer remain to protect other transistor locations. Subsequently, source/drain locations of the exposed transistor locations are etched along with the remaining portion of the second layer. The etch is substantially terminated by removing the portion of the second layer using an end-point detection technique involving the first layer. Subsequently an epitaxial layer is formed in the source/drain recesses to provide stress on a channel region of the transistor locations.
    • 通过形成覆盖多个晶体管位置的第一和第二层来形成电子器件。 执行蚀刻以去除第一层和第二层的部分以暴露多个晶体管位置的一部分,而第一层和第二层的其它部分保留以保护其他晶体管位置。 随后,暴露的晶体管位置的源极/漏极位置与第二层的剩余部分一起被蚀刻。 通过使用涉及第一层的端点检测技术去除第二层的部分来基本上终止蚀刻。 随后在源极/漏极凹槽中形成外延层,以在晶体管位置的沟道区上提供应力。
    • 43. 发明申请
    • Self correcting suppression of threshold voltage variation in fully depleted transistors
    • 完全耗尽晶体管中阈值电压变化的自校正抑制
    • US20060240629A1
    • 2006-10-26
    • US11113589
    • 2005-04-25
    • Marius OrlowskiYasuhito Shiho
    • Marius OrlowskiYasuhito Shiho
    • H01L21/336
    • H01L27/1203H01L21/76283H01L29/78603
    • A semiconductor fabrication method includes implanting or otherwise introducing a counter doping impurity distribution into a semiconductor top layer of a silicon-on-insulator (SOI) wafer. The top layer has a variable thickness including a first thickness at a first region and a second thickness, greater than the first, at a second region. The impurity distribution is introduced into the top layer such that the net charge deposited in the semiconductor top layer varies linearly with the thickness variation. The counter doping causes the total net charge in the first region to be approximately equal to the net charge in the second region. This variation in deposited net charge leads to a uniform threshold voltage for fully depleted transistors. Fully depleted transistors are then formed in the top layer.
    • 半导体制造方法包括将反掺杂杂质分布注入或以其它方式引入到绝缘体上硅(SOI)晶片的半导体顶层中。 顶层具有包括在第一区域处的第一厚度和大于第一区域的第二厚度的可变厚度。 杂质分布被引入到顶层中,使得沉积在半导体顶层中的净电荷随着厚度变化而线性变化。 反掺杂导致第一区域中的总净电荷近似等于第二区域中的净电荷。 沉积的净电荷的这种变化导致用于完全耗尽的晶体管的均匀阈值电压。 然后在顶层中形成完全耗尽的晶体管。
    • 44. 发明申请
    • Isolation trench perimeter implant for threshold voltage control
    • 隔离沟槽周边植入用于阈值电压控制
    • US20060068542A1
    • 2006-03-30
    • US10955658
    • 2004-09-30
    • Marius OrlowskiJames Burnett
    • Marius OrlowskiJames Burnett
    • H01L21/8238
    • H01L21/823878H01L21/76237
    • A method of forming isolation trenches in a semiconductor fabrication process to reduce transistor channel edge effect currents includes forming a masking structure overlying a substrate to expose a first area of the substrate. Spacers are formed on sidewalls of the masking structure. The spacers cover a perimeter region of the first area thereby leaving a second smaller area exposed. The region underlying the second area is etched to form an isolation trench that is then filled with a dielectric. The spacers are removed to expose the perimeter region. Using the masking structure and the trench dielectric as a mask, an impurity distribution is implanted into a portion of the substrate underlying the perimeter region. The impurity distribution thus surrounds a perimeter of the trench dielectric proximal to an upper surface of the substrate. The perimeter impurity distribution dopant, in a typical case, is p-type for NMOS transistors and n-type for PMOS.
    • 在半导体制造工艺中形成隔离沟槽以减少晶体管沟道边缘效应电流的方法包括形成覆盖衬底的掩模结构以暴露衬底的第一区域。 隔板形成在掩蔽结构的侧壁上。 间隔物覆盖第一区域的周边区域,从而留下暴露的第二较小区域。 蚀刻第二区域下面的区域以形成隔离沟槽,然后填充电介质。 去除间隔物以露出周边区域。 使用掩模结构和沟槽电介质作为掩模,杂质分布被注入在周边区域下面的衬底的一部分中。 因此,杂质分布围绕靠近衬底的上表面的沟槽电介质的周边。 在典型情况下,周边杂质分布掺杂剂对于NMOS晶体管为p型,对于PMOS为n型。
    • 46. 发明申请
    • Method for removing a semiconductor layer
    • 去除半导体层的方法
    • US20050260816A1
    • 2005-11-24
    • US10851607
    • 2004-05-21
    • Marius Orlowski
    • Marius Orlowski
    • H01L21/336H01L27/10H01L29/786
    • H01L29/78639H01L29/42392H01L29/66772
    • A method of forming a semiconductor device includes forming a first layer over a semiconductor substrate and forming a second layer over the first layer. The second layer includes silicon and has an etch selectivity to the second layer that is greater than approximately 1,000. In one embodiment, the second layer is a porous material, such as porous silicon, porous silicon germanium, porous silicon carbide, and porous silicon carbon alloy. A gate insulator is formed over the second layer and a control electrode is formed over the gate insulator. The first layer is selectively removed with respect to the second layer and the semiconductor substrate.
    • 形成半导体器件的方法包括在半导体衬底上形成第一层并在第一层上形成第二层。 第二层包括硅,并且对第二层具有大于约1,000的蚀刻选择性。 在一个实施方案中,第二层是多孔材料,例如多孔硅,多孔硅锗,多孔碳化硅和多孔硅碳合金。 在第二层上形成栅极绝缘体,并且在栅极绝缘体上形成控制电极。 相对于第二层和半导体衬底选择性地去除第一层。
    • 47. 发明申请
    • Transistor having multiple channels
    • 具有多个通道的晶体管
    • US20050167650A1
    • 2005-08-04
    • US11091980
    • 2005-03-29
    • Marius OrlowskiLeo Mathew
    • Marius OrlowskiLeo Mathew
    • H01L21/336H01L29/423H01L29/786H01L29/417
    • H01L29/785H01L29/42384H01L29/66772H01L29/66795H01L29/78654
    • A transistor (10) overlies a substrate (12) and has a plurality of overlying channels (72, 74, 76) that are formed in a stacked arrangement. A continuous gate (60) material surrounds each of the channels. Each of the channels is coupled to source and drain electrodes (S/D) to provide increased channel surface area in a same area that a single channel structure is conventionally implemented. A vertical channel dimension between two regions of the gate (60) are controlled by a growth process as opposed to lithographical or spacer formation techniques. The gate is adjacent all sides of the multiple overlying channels. Each channel is formed by growth from a common seed layer and the source and drain electrodes and the channels are formed of a substantially homogenous crystal lattice.
    • 晶体管(10)覆盖在衬底(12)上并且具有以堆叠布置形成的多个覆盖通道(72,74,76)。 连续的门(60)材料围绕每个通道。 每个通道耦合到源极和漏极(S / D),以在通常实现单通道结构的相同区域中提供增加的沟道表面积。 栅极(60)的两个区域之间的垂直沟道尺寸由生长过程控制,而不是光刻或间隔物形成技术。 门与多个上覆通道的所有侧相邻。 每个通道由普通种子层生长形成,源极和漏极以及通道由基本均匀的晶格形成。
    • 50. 发明授权
    • Insulated gate field effect transistor having vertically layered
elevated source/drain structure
    • 绝缘栅场效应晶体管具有垂直分层的源极/漏极结构
    • US5235203A
    • 1993-08-10
    • US722416
    • 1991-06-27
    • Carlos MazureMarius OrlowskiMatthew S. Noell
    • Carlos MazureMarius OrlowskiMatthew S. Noell
    • H01L29/08
    • H01L29/0847
    • An insulated gate field effect transistor having a vertically layered elevated source/drain structure includes an electrically conductive suppression region for resistance to hot carrier injection. The device includes a semiconductor substrate of first conductivity type having a gate insulator disposed on the surface of that substrate. A gate electrode, in turn, is disposed on the gate insulator. A lightly doped drain region of second conductivity type is formed in the substrate in alignment with the gate electrode. An electrically conductive suppression region having a first low electrical conductivity is positioned to electrically contact the drain region, but is electrically isolated from the gate electrode and is spaced a first distance from the gate electrode. A heavily doped drain contact also contacts the drain region and is spaced further away from the gate electrode than is the electrically conducted suppression region.
    • 具有垂直分层的升高的源/漏结构的绝缘栅场效应晶体管包括用于耐热载流子注入的导电抑制区。 该器件包括第一导电类型的半导体衬底,其具有设置在该衬底表面上的栅极绝缘体。 栅电极依次设置在栅极绝缘体上。 第二导电类型的轻掺杂漏极区域与栅电极对准地形成在衬底中。 具有第一低导电性的导电抑制区被定位成与漏极区电接触,但是与栅电极电隔离并且与栅电极隔开第一距离。 重掺杂的漏极接触还接触漏极区,并且与导电抑制区相比更远离栅电极。