会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Method of building an EPROM cell without drain disturb and reduced
select gate resistance
    • 构建EPROM单元而无漏极干扰和降低选择栅极电阻的方法
    • US5981340A
    • 1999-11-09
    • US939397
    • 1997-09-29
    • Kuo-Tung ChangErwin J. PrinzCraig T. Swift
    • Kuo-Tung ChangErwin J. PrinzCraig T. Swift
    • G11C16/04H01L27/115H01L21/336
    • H01L27/115G11C16/0433
    • A semiconductor device (70) includes a memory cell having a select transistor (67) and a storage transistor (65) having a relatively uniform tunnel dielectric thickness under both the floating gate (651) of the storage transistor and the select gate (671) of the select transistor (67). The select transistor (67) is adjacent to the drain region (68) for the memory cell to nearly eliminate a drain disturb problem. During programming, the control gate (652) is at a negative potential, and the drain region (68) is at a positive potential. The drain potential is sufficiently low to not degrade the tunnel dielectric layer (42) of the select transistor (67). During erase, a positive potential is applied to the control gate (652). The relatively uniform tunnel dielectric layer (42) thickness of the select transistor (67) allows for a faster operating device by increasing the read current of the memory device.
    • 半导体器件(70)包括具有在存储晶体管的浮动栅极(651)和选择栅极(671)两者下具有相对均匀的隧道电介质厚度的选择晶体管(67)和存储晶体管(65)的存储单元, 的选择晶体管(67)。 选择晶体管(67)与用于存储单元的漏极区域(68)相邻,几乎消除了漏极干扰问题。 在编程期间,控制栅极(652)处于负电位,漏区(68)处于正电位。 漏极电位足够低以不降低选择晶体管(67)的隧道介电层(42)。 在擦除期间,向控制栅极施加正电位(652)。 选择晶体管(67)的相对均匀的隧道介电层(42)的厚度通过增加存储器件的读取电流而允许更快的操作器件。
    • 43. 发明授权
    • Fabrication process for a 1-transistor EEPROM memory device capable of
low-voltage operation
    • 能够进行低电压工作的1晶体管EEPROM存储器件的制造工艺
    • US5585293A
    • 1996-12-17
    • US446133
    • 1995-05-22
    • Umesh SharmaKuo-Tung Chang
    • Umesh SharmaKuo-Tung Chang
    • H01L21/8247
    • H01L27/11517
    • A method for fabricating a 1-transistor EEPROM device, which can be programmed and erased by Fowler-Nordheim tunneling includes the formation of a memory gate (28) overlying a tunneling region (22), and aligning source (32) and drain (34) regions in a semiconductor substrate (10), such that a vertically oriented electric field (46) is created in the tunneling region (22). The memory gate (28) is coupled to a contact region (30) by a connecting portion (31). A select gate (14) controls a portion of the channel region in the substrate (10) adjacent to the tunneling region (22). The EEPROM device is programmed by applying a voltage of a first polarity memory gate (28), while applying a voltage of a second polarity to the source region (32), the drain region (34), and to the substrate (10). Under the applied voltages, charge carriers tunnel through a tunnel oxide layer (40) and into a silicon nitride layer (42), located intermediate to the memory gate (28) and the tunnel region (22). To erase the EEPROM device, the polarity of the applied voltages is reversed, and charge carriers of an opposite conductivity type tunnel into the silicon nitride layer (42).
    • 可以由Fowler-Nordheim隧道编程和擦除的用于制造1-晶体管EEPROM器件的方法包括形成覆盖隧道区域(22)的存储栅极(28),以及对准源极(32)和漏极(34) )区域,使得在隧道区域(22)中产生垂直取向的电场(46)。 存储器栅极(28)通过连接部分(31)耦合到接触区域(30)。 选择栅极(14)控制与隧道区域(22)相邻的衬底(10)中的沟道区域的一部分。 通过施加第一极性存储栅极(28)的电压,同时向源极区域(32),漏极区域(34)和衬底(10)施加第二极性的电压来对EEPROM器件进行编程。 在施加的电压下,电荷载流子穿过隧道氧化物层(40)并且位于位于存储器栅极(28)和隧道区域(22)中间的氮化硅层(42)中。 为了擦除EEPROM器件,施加的电压的极性反转,并且反向导电型隧道的电荷载流子进入氮化硅层(42)。
    • 45. 发明授权
    • Process of making EEPROM memory device having a sidewall spacer floating
gate electrode
    • 制造具有侧壁间隔物浮栅电极的EEPROM存储器件的工艺
    • US5494838A
    • 1996-02-27
    • US448096
    • 1995-05-23
    • Kuo-Tung ChangUmesh SharmaJack Higman
    • Kuo-Tung ChangUmesh SharmaJack Higman
    • H01L27/115H01L29/423H01L21/8247
    • H01L27/115H01L29/42324H01L29/42328
    • An EEPROM memory array includes a plurality of memory cells having a floating gate electrode (22) formed as a sidewall spacer adjacent to a control gate electrode (20). Source and drain regions (12, 14) reside in a semiconductor substrate (10) and define a segmented channel region (16) therebetween. A select gate electrode (18) overlies a first channel region (24) and separates the floating gate electrode (2) from the source region (12). The control gate electrode (20) overlies a third channeI region (28) and separates the floating gate electrode (22) from the drain region (14). The floating gate electrode (22) overlies a second channel region (26) and is separated therefrom by a thin tunnel oxide layer (42). The EEPROM device of the invention can be programmed by either source side injection, or by Fowler-Nordheim tunneling. Additionally, a process is provided for the fabrication of an EEPROM array utilizing adjacent select gate electrodes (18, 18') as a doping mask.
    • EEPROM存储器阵列包括具有形成为与控制栅极(20)相邻的侧壁间隔的浮栅电极(22)的多个存储单元。 源极和漏极区域(12,14)驻留在半导体衬底(10)中并且在它们之间限定分割的沟道区域(16)。 选择栅电极(18)覆盖在第一沟道区(24)上,并将浮栅电极(2)与源极区(12)分离。 控制栅电极(20)覆盖第三通道区域(28),并将浮栅电极(22)与漏极区域(14)分离。 浮栅电极(22)覆盖第二沟道区(26),并由薄隧道氧化物层(42)分离。 本发明的EEPROM装置可以通过源侧注入或通过Fowler-Nordheim隧道进行编程。 此外,提供了一种制造使用相邻的选择栅电极(18,18')作为掺杂掩模的EEPROM阵列的工艺。
    • 46. 发明授权
    • Self-aligned, split-gate EEPROM device
    • 自对准,分闸门EEPROM器件
    • US5408115A
    • 1995-04-18
    • US223395
    • 1994-04-04
    • Kuo-Tung Chang
    • Kuo-Tung Chang
    • H01L27/115H01L29/792H01L27/12
    • H01L29/792H01L27/115Y10S257/90
    • An EEPROM device capable of operating with a single low-voltage power supply includes a control gate electrode (30) and a select gate electrode (14) overlying separate portions of a channel region (32). Electrical charge is stored in an ONO layer (20) overlying a portion of the channel region (32) and separating the control gate electrode (30) from the channel region (32). The memory device is programmed using source-side injection, where electrons traverse the channel region (32) and are injected into trapping sites (34) located within the silicon nitride layer (24) of the ONO layer (20). To provide the necessary field gradient within the channel region (32), the control gate electrode (30) is spaced apart from the source region (16) by the select gate electrode (14). In either of two embodiments, two layers of polysilicon are used to form the select gate electrode (14) and the control gate electrode (30). The second layer of polysilicon is formed as a sidewall spacer on the first layer of polysilicon. Accordingly, a high-density memory device is achieved.
    • 能够使用单个低压电源操作的EEPROM器件包括覆盖沟道区域(32)的分离部分的控制栅电极(30)和选择栅电极(14)。 电荷存储在覆盖通道区域(32)的一部分上的ONO层(20)中,并将控制栅电极(30)与沟道区域(32)分离。 使用源侧注入对存储器件进行编程,其中电子穿过沟道区(32)并被注入到位于ONO层(20)的氮化硅层(24)内的俘获位置(34)中。 为了在通道区​​域(32)内提供必要的场梯度,控制栅电极(30)通过选择栅电极(14)与源极区域(16)间隔开。 在两个实施例中的任一个中,使用两层多晶硅来形成选择栅电极(14)和控制栅电极(30)。 第二层多晶硅形成为第一层多晶硅上的侧壁间隔物。 因此,实现了高密度存储器件。