会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Adaptive vehicle control system with driving style recognition based on vehicle U-turn maneuvers
    • 自适应车辆控制系统具有基于车辆U形转弯机动的驾驶风格识别
    • US07831407B2
    • 2010-11-09
    • US12179211
    • 2008-07-24
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • G01P15/00
    • B60W40/09
    • An adaptive vehicle control system that classifies a driver's driving style based on vehicle U-turn maneuvers. A process determines if the vehicle has started a turn if the yaw rate is greater than a first yaw rate threshold, and determines a vehicle heading angle based on the yaw rate and a sampling time if the vehicle has started a turn. The process then determines whether the vehicle maneuver has been completed by determining if the yaw rate is less than a second yaw rate threshold. The process then determines that the completed maneuver was a U-turn maneuver if the yaw rate is less than a third yaw rate threshold during the maneuver, the final vehicle heading angle is within a heading angle range and the duration of the maneuver is less than a predetermined time threshold. In one non-limiting embodiment, the heading angle range is between 165° and 195°.
    • 一种适应性车辆控制系统,其基于车辆U形转动来对驾驶员的驾驶风格进行分类。 如果偏航率大于第一横摆速度阈值,则判定车辆是否开始转弯,并且如果车辆开始转弯,则基于偏航率和采样时间确定车辆行驶角度。 然后,该过程通过确定横摆率是否小于第二偏转角速度阈值来确定车辆操纵是否已经完成。 然后,该过程确定如果在操纵期间横摆率小于第三偏航角速度阈值,则完成的操纵是U形转弯机动,最终车辆行驶角度在航向角度范围内并且机动的持续时间小于 预定时间阈值。 在一个非限制性实施例中,航向角范围在165°和195°之间。
    • 45. 发明授权
    • Brake pad prognosis system
    • 制动垫预后系统
    • US07694555B2
    • 2010-04-13
    • US12036675
    • 2008-02-25
    • Mark N. HowellJohn P. Whaite, Jr.Phanu AmatyakulYuen-Kwok ChinMutasim A. SalmanChih-Hung YenMark T. Riefe
    • Mark N. HowellJohn P. Whaite, Jr.Phanu AmatyakulYuen-Kwok ChinMutasim A. SalmanChih-Hung YenMark T. Riefe
    • G01M17/00
    • B60T17/221F16D2066/006
    • A method for providing an estimate of brake pad thickness. The method employs fusion of sensors, if used, and driver brake modeling to predict the vehicle brake pad life. An algorithm is employed that uses various inputs, such as brake pad friction material properties, brake pad cooling rate, brake temperature, vehicle mass, road grade, weight distribution, brake pressure, brake energy, braking power, etc. to provide the estimation. The method calculates brake work using total work minus losses, such as aerodynamic drag resistance, engine braking and/or braking power as braking torque times velocity divided by rolling resistance to determine the brake rotor and lining temperature. The method then uses the brake temperature to determine the brake pad wear, where the wear is accumulated for each braking event. A brake pad sensor can be included to provide one or more indications of brake pad thickness from which the estimation can be revised.
    • 一种用于提供制动衬块厚度的估计的方法。 该方法采用传感器的融合(如果使用),以及驾驶员制动器建模来预测车辆刹车片的寿命。 采用了诸如刹车片摩擦材料特性,刹车片冷却速度,制动温度,车辆质量,道路等级,重量分配,制动压力,制动能量,制动功率等各种输入的算法来提供估计。 该方法通过制动转矩乘以速度除以滚动阻力来确定制动转子和衬里温度,使用总工作减去损耗(如气动阻力,发动机制动和/或制动功率)来计算制动作业。 然后,该方法使用制动器温度来确定制动片磨损,其中每次制动事件都会累积磨损。 可以包括制动衬块传感器以提供制动衬块厚度的一个或多个指示,从中可以修改估计值。
    • 46. 发明申请
    • ADAPTIVE VEHICLE CONTROL SYSTEM WITH DRIVING STYLE RECOGNITION BASED ON VEHICLE LEFT/RIGHT TURNS
    • 基于车辆左/右倾的驾驶风格识别的自适应车辆控制系统
    • US20100023216A1
    • 2010-01-28
    • US12179101
    • 2008-07-24
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • B62D6/00
    • B62D6/007B60W40/09
    • An adaptive vehicle control system that classifies a driver's driving style based on left/right-turn maneuvers. A process determines if the vehicle has started a turn if the yaw rate is greater than a first yaw rate threshold, and determines a vehicle heading angle based on the yaw rate and a sampling time if the vehicle has started a turn. The process then determines whether the vehicle maneuver has been completed by determining if the yaw rate is less than a second yaw rate threshold. The process then determines that the completed maneuver was a left/right-turn maneuver if the yaw rate is less than a third yaw rate threshold over the sampling time and the vehicle heading angle is within a heading angle range for a time period less than a predetermined time threshold. In one non-limiting embodiment, the heading angle range is between 75° and 105°.
    • 一种自适应车辆控制系统,其基于左/右转动作来对驾驶员的驾驶风格进行分类。 如果偏航率大于第一横摆速度阈值,则判定车辆是否开始转弯,并且如果车辆开始转弯,则基于偏航率和采样时间确定车辆行驶角度。 然后,该过程通过确定横摆率是否小于第二偏转角速度阈值来确定车辆操纵是否已经完成。 然后,该过程确定如果在采样时间之后偏航率小于第三偏航角速度阈值,则完成的操纵是左/右转动作,并且车辆行驶角度在小于等于 预定时间阈值。 在一个非限制性实施例中,航向角范围在75°和105°之间。
    • 47. 发明申请
    • ADAPTIVE VEHICLE CONTROL SYSTEM WITH INTEGRATED MANEUVER-BASED DRIVING STYLE RECOGNITION
    • 具有集成MANUUVER的驾驶风格识别的自适应车辆控制系统
    • US20100023183A1
    • 2010-01-28
    • US12179314
    • 2008-07-24
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • G06F17/00
    • B60W30/12B60W40/09
    • A vehicle control system that classifies a driver's driving style based on characteristic maneuvers. The system includes a plurality of vehicle sensors that detect various vehicle parameters. A maneuver identification processor receives the sensor signals to identify a characteristic maneuver of the vehicle and provides a maneuver identifier signal of the maneuver. A style characterization processor receives the maneuver identifier signals, sensor signals from the vehicle sensors and the traffic and road condition signals, and classifies driving style based on the signals to classify the style of the driver driving the vehicle. The classification of the driver style can be provided for a level-1 combination that combines the classification results from different maneuver type classifiers for a single maneuver, a level-2 combination that combines the classification results from multiple maneuvers that are of the same type and a level-3 combination that combines the classification results from different types of characteristic maneuvers.
    • 一种车辆控制系统,其基于特征机动来分类驾驶员的驾驶风格。 该系统包括检测各种车辆参数的多个车辆传感器。 机动识别处理器接收传感器信号以识别车辆的特征操纵并提供操纵的操纵标识符信号。 风格表征处理器接收机动标识符信号,来自车辆传感器的传感器信号以及交通和道路状态信号,并且基于信号对驾驶风格进行分类,以分类驾驶车辆的驾驶员的风格。 驾驶员风格的分类可以提供给一级组合,其将来自不同机动类型分类器的分类结果组合为单个机动,组合来自相同类型的多个演习的分类结果的二级组合;以及 一个三级组合,结合了不同类型的特征机动的分类结果。
    • 48. 发明申请
    • ADAPTIVE VEHICLE CONTROL SYSTEM WITH DRIVING STYLE RECOGNITION BASED ON TRAFFIC SENSING
    • 基于交通感测的驾驶风格识别自适应车辆控制系统
    • US20100019880A1
    • 2010-01-28
    • US12179228
    • 2008-07-24
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • Jihua HuangWilliam C. LinYuen-Kwok Chin
    • G06F7/00
    • G07C5/085
    • An adaptive vehicle control system that classifies a driver's driving style based on characteristic maneuvers and road and traffic conditions. The system includes a plurality of vehicle sensors that detect various vehicle parameters. A maneuver identification processor receives the sensor signals to identify a characteristic maneuver of the vehicle and provides a maneuver identifier signal of the maneuver. The system also includes a traffic condition recognition processor that receives the sensor signals, and provides traffic condition signals identifying traffic conditions. A style characterization processor receives the maneuver identifier signals, sensor signals from the vehicle sensors and the traffic condition signals, and classifies driving style based on the signals to classify the style of the driver driving the vehicle.
    • 一种自适应车辆控制系统,其基于特征机动和道路和交通状况对驾驶员的驾驶风格进行分类。 该系统包括检测各种车辆参数的多个车辆传感器。 机动识别处理器接收传感器信号以识别车辆的特征操纵并提供操纵的操纵标识符信号。 该系统还包括接收传感器信号的交通状况识别处理器,并提供识别交通状况的交通状况信号。 风格表征处理器接收机动标识符信号,来自车辆传感器的传感器信号和交通状况信号,并且基于信号对驾驶风格进行分类,以分类驾驶车辆的驾驶员的风格。
    • 49. 发明申请
    • Brake Pad Prognosis System
    • 刹车片预测系统
    • US20080236269A1
    • 2008-10-02
    • US12036675
    • 2008-02-25
    • Mark N. HowellJohn P. WhaitePhanu AmatyakulYuen-Kwok ChinMutasim A. SalmanChih-Hung YenMark T. Riefe
    • Mark N. HowellJohn P. WhaitePhanu AmatyakulYuen-Kwok ChinMutasim A. SalmanChih-Hung YenMark T. Riefe
    • G01L5/28
    • B60T17/221F16D2066/006
    • A method for providing an estimate of brake pad thickness. The method employs fusion of sensors, if used, and driver brake modeling to predict the vehicle brake pad life. An algorithm is employed that uses various inputs, such as brake pad friction material properties, brake pad cooling rate, brake temperature, vehicle mass, road grade, weight distribution, brake pressure, brake energy, braking power, etc. to provide the estimation. The method calculates brake work using total work minus losses, such as aerodynamic drag resistance, engine braking and/or braking power as braking torque times velocity divided by rolling resistance to determine the brake rotor and lining temperature. The method then uses the brake temperature to determine the brake pad wear, where the wear is accumulated for each braking event. A brake pad sensor can be included to provide one or more indications of brake pad thickness from which the estimation can be revised.
    • 一种用于提供制动衬块厚度的估计的方法。 该方法采用传感器的融合(如果使用),以及驾驶员制动器建模来预测车辆刹车片的寿命。 采用了诸如刹车片摩擦材料特性,刹车片冷却速度,制动温度,车辆质量,道路等级,重量分配,制动压力,制动能量,制动功率等各种输入的算法来提供估计。 该方法通过制动转矩乘以速度除以滚动阻力来确定制动转子和衬里温度,使用总工作减去损耗(如气动阻力,发动机制动和/或制动功率)来计算制动作业。 然后,该方法使用制动器温度来确定制动片磨损,其中每次制动事件都会累积磨损。 可以包括制动衬块传感器以提供制动衬块厚度的一个或多个指示,从中可以修改估计值。