会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Markerless augmented reality system and method using projective invariant
    • 无标记增强现实系统和使用投影不变量的方法
    • US08791960B2
    • 2014-07-29
    • US12905649
    • 2010-10-15
    • Suk June YoonKyung Shik RohSeung Yong HyungSung Hwa Ahn
    • Suk June YoonKyung Shik RohSeung Yong HyungSung Hwa Ahn
    • G09G5/00
    • G06T19/006G06T7/246G06T2207/10016
    • Disclosed herein are a markerless augmented reality system and method for extracting feature points within an image and providing augmented reality using a projective invariant of the feature points. The feature points are tracked in two images photographed while varying the position of an image unit, a set of feature points satisfying a plane projective invariant is obtained from the feature points, and augmented reality is provided based on the set of feature points. Accordingly, since the set of feature points satisfies the plane projective invariant even when the image unit is moved and functions as a marker, a separate marker is unnecessary. In addition, since augmented reality is provided based on the set of feature points, a total computation amount is decreased and augmented reality is more efficiently provided.
    • 这里公开了一种无标记增强现实系统和方法,用于提取图像内的特征点,并使用特征点的投影不变量提供增强现实。 在改变图像单元的位置的同时拍摄的两幅图像中跟踪特征点,从特征点获得满足平面投影不变性的一组特征点,并且基于该特征点集提供增强现实。 因此,即使当图像单元被移动并用作标记时,由于特征点集合满足平面投影不变性,因此不需要单独的标记。 此外,由于基于特征点集合提供增强现实,所以总计算量减少,增强现实更有效地提供。
    • 43. 发明授权
    • Object recognition system and method
    • 对象识别系统和方法
    • US08731326B2
    • 2014-05-20
    • US13197114
    • 2011-08-03
    • Ji Hyo LeeKyung Shik Roh
    • Ji Hyo LeeKyung Shik Roh
    • G06K9/66G06K9/36
    • G06K9/4609G06K9/4614
    • An object recognition system including an image data storage unit to store a captured image, a feature extraction unit to extract an image having a predetermined rotational component among rotational components of the image stored in the image data storage unit and to extract feature vectors based on the extracted image, a database unit to store object information, a recognition unit to determine whether an object corresponding to the captured image is present in the database unit through comparison between the feature vectors extracted by the feature extraction unit and the object information stored in the database unit and to recognize information on the object stored in the database unit based on determination as to whether the object corresponding to the captured image is present in the database unit, and a system administration unit to receive the information on the object recognized by the recognition unit.
    • 一种对象识别系统,包括:图像数据存储单元,用于存储捕获的图像;特征提取单元,用于提取在图像数据存储单元中存储的图像的旋转分量中具有预定旋转分量的图像,并且基于 提取图像,用于存储对象信息的数据库单元,识别单元,用于通过比较由特征提取单元提取的特征矢量与存储在数据库中的对象信息来确定与捕获图像相对应的对象是否存在于数据库单元中 基于对应于所述拍摄图像的对象是否存在于所述数据库单元中的确定来识别存储在所述数据库单元中的对象的信息;以及系统管理单元,用于接收由所述识别单元识别的对象的信息 。
    • 44. 发明授权
    • System and method for extracting three-dimensional coordinates
    • 用于提取三维坐标的系统和方法
    • US08718326B2
    • 2014-05-06
    • US13298834
    • 2011-11-17
    • Suk June YoonKyung Shik RohSeung Yong HyungSung Hwan Ahn
    • Suk June YoonKyung Shik RohSeung Yong HyungSung Hwan Ahn
    • G06K9/00
    • G06T7/593G06T2207/10012G06T2207/10028
    • A system and method for extracting 3D coordinates, the method includes obtaining, by a stereoscopic image photographing unit, two images of a target object, and obtaining 3D coordinates of the object on the basis of coordinates of each pixel of the two images, measuring, by a Time of Flight (TOF) sensor unit, a value of a distance to the object, and obtaining 3D coordinates of the object on the basis of the measured distance value, mapping pixel coordinates of each image to the 3D coordinates obtained through the TOF sensor unit, and calibrating the mapped result, determining whether each set of pixel coordinates and the distance value to the object measured through the TOF sensor unit are present, calculating a disparity value on the basis of the distance value or the pixel coordinates, and calculating 3D coordinates of the object on the basis of the calculated disparity value.
    • 一种用于提取3D坐标的系统和方法,所述方法包括:通过立体图像拍摄单元获取目标对象的两个图像,并且基于两个图像的每个像素的坐标来获得对象的3D坐标, 通过飞行时间(TOF)传感器单元,到物体的距离的值,并且基于测量的距离值获得对象的3D坐标,将每个图像的像素坐标映射到通过TOF获得的3D坐标 传感器单元,并且校准映射结果,确定是否存在通过TOF传感器单元测量的每组像素坐标和距离值,基于距离值或像素坐标计算视差值,并计算 基于计算出的视差值对象的3D坐标。
    • 45. 发明授权
    • Walking control apparatus of robot and method of controlling the same
    • 机器人步行控制装置及其控制方法
    • US08688273B2
    • 2014-04-01
    • US13005262
    • 2011-01-12
    • Ju Suk LeeWoong KwonKyung Shik Roh
    • Ju Suk LeeWoong KwonKyung Shik Roh
    • G05B19/19
    • B62D57/032B25J9/1648G05B2219/23289
    • A walking control apparatus of a robot includes a joint portion provided in each of a plurality of legs of the robot, a pose sensing unit to sense the pose of the robot, a walking state determination unit to determine a walking state from the pose of the robot, a knot point compensation value calculator to determine a Center Of Mass (COM) of the robot from the pose of the robot and to calculate a knot point compensation value, a desired angle trajectory generator to generate a reference knot point of the joint portion corresponding to the walking state, to compensate for the reference knot point using the knot point compensation value so as to generate a desired knot point, and to generate a desired angle trajectory of the joint portion using the desired knot point. The knot point which is the angle command of the joint portion of each of the legs to perform the next step is compensated for based on the COM, and the compensated desired knot point is smoothly connected using the spline curve such that the robot walks similar to a human. In addition, in order to maintain balance while walking, the angle of the joint portion of the intermediate point of the current step is fed back and the knot point of the next step is predicted and adjusted, such that the robot stably and smoothly walks.
    • 机器人的步行控制装置包括设置在机器人的多个腿部的接合部,感测机器人姿态的姿势检测部,行走状态判定部, 机器人,结点补偿值计算器,从机器人的姿态确定机器人的质心(COM),并计算结点补偿值,所需角度轨迹发生器,以生成关节部分的参考点点 对应于步行状态,使用结点补偿值来补偿参考点,以产生期望的结点,并且使用期望的结点产生所述关节部分的期望的角度轨迹。 根据COM补偿作为每个腿的关节部分的角度指令的结点,并且使用样条曲线平滑地连接补偿的所需结点,使得机器人类似于 一个人。 此外,为了在行走时保持平衡,当前台阶的中间点的接合部分的角度被反馈,并且预测和调整下一步骤的结点,使得机器人平稳而顺利地行走。
    • 46. 发明授权
    • Robot and method of controlling balance thereof
    • 机器人及其平衡方法
    • US08498743B2
    • 2013-07-30
    • US12588847
    • 2009-10-29
    • Ho Seong KwakKyung Shik RohWoong Kwon
    • Ho Seong KwakKyung Shik RohWoong Kwon
    • G06F19/00
    • B62D57/032
    • A finite state machine (FSM)-based biped robot, to which a limit cycle is applied to balance the robot right and left on a two-dimensional space, and a method of controlling balance of the robot. In order to balance an FSM-based biped robot right and left on a two-dimensional space, control angles to balance the robot according to states of the FSM-based biped robot are set. The range of the control angles is restricted to reduce the maximum right and left moving distance of the biped robot and thus to reduce the maximum right and left moving velocity of the biped robot, thereby reducing the sum total of the moments of the biped robot and thus allowing the ankles of the biped robot to balance the biped robot to be controlled, and causing the soles of the feet of the biped robot to parallel contact the ground.
    • 基于有限状态机(FSM)的双足机器人,其应用极限循环以在二维空间上左右平衡机器人,以及控制机器人平衡的方法。 为了平衡基于FSM的两足动物机器人在二维空间上的左右左右,设置了根据基于FSM的两足动物机器人的状态来平衡机器人的控制角度。 控制角度的范围被限制以减少双足机器人的最大左右移动距离,从而减少双足机器人的最大左右移动速度,从而减少两足动物机器人的力矩总和 从而允许Biped机器人的脚踝平衡要被控制的Biped机器人,并且使得双足机器人脚部的底脚平行地接触地面。
    • 47. 发明授权
    • Robot and method of controlling balance thereof
    • 机器人及其平衡方法
    • US08498742B2
    • 2013-07-30
    • US12588846
    • 2009-10-29
    • Ho Seong KwakWoong KwonKyung Shik Roh
    • Ho Seong KwakWoong KwonKyung Shik Roh
    • G06F19/00
    • B62D57/032
    • An finite state machine (FSM)-based biped walking robot, to which a limit cycle is applied to balance the robot right and left on a two-dimensional space, and a method of controlling balance of the robot. In order to balance an FSM-based biped walking robot right and left on a two-dimensional space, control angles to balance the robot according to states of the FSM-based biped walking robot are set, and the control angles are controlled using a sinusoidal function to allow relations between the control angles and control angular velocities to form a stable closed loop within a limit cycle, thereby allowing the biped walking robot to balance itself while changing its supporting foot and thus to safely walk without falling down.
    • 基于有限状态机(FSM)的两足动作机器人,其中应用了限制循环来平衡机器人在二维空间上的左右左右,以及一种控制机器人平衡的方法。 为了平衡基于FSM的两足动物机器人在二维空间上的左右左右,设置了根据基于FSM的双足步行机器人的状态来平衡机器人的控制角度,并且使用正弦曲线来控制控制角度 功能是允许控制角和控制角速度之间的关系在极限循环内形成稳定的闭环,从而允许双足步行机器人在改变其支撑脚的同时平衡自身,从而安全地行走而不会掉落。
    • 49. 发明申请
    • ROBOT AND CONTROL METHOD THEREOF
    • 机器人及其控制方法
    • US20120165979A1
    • 2012-06-28
    • US13327857
    • 2011-12-16
    • San LIMMyung Hee KimKyung Shik RohYoung Bo ShimBok Man Lim
    • San LIMMyung Hee KimKyung Shik RohYoung Bo ShimBok Man Lim
    • G05B19/04
    • B25J9/1669B25J9/162G05B2219/39113G05B2219/40244G05B2219/40264G05B2219/40395
    • A robot and a control method thereof. The control method includes generating and storing plural grasping motions corresponding to data of a target object, selecting a grasping motion corresponding to a grasping purpose of the target object among the plural grasping motions, generating a path of arms corresponding to the selected grasping motion, calculating torques to track the path of the arms, and outputting the torques toward the arms so as to perform movement of the arms and grasping of the target object. The grasping motion path corresponding to the grasping purpose is generated and the path of arms is generated, thereby reducing overall calculation time during grasping of the target object to increase calculating efficiency, minimizing generation of the path of the arms, and allowing an arm path calculating process to be performed at the late stage of a grasping control process to improve grasping performance.
    • 机器人及其控制方法。 控制方法包括生成并存储与目标对象的数据相对应的多个抓取动作,在多个抓取动作中选择与目标对象的抓取目的相对应的抓取动作,生成与所选择的抓握动作对应的臂的路径,计算 扭矩以跟踪臂的路径,并且朝向臂输出扭矩,以便执行臂的移动和抓取目标对象。 产生对应于抓握目的的抓握运动路径,并且产生臂的路径,从而减少在抓取目标对象期间的总体计算时间,以增加计算效率,最小化臂的路径的产生,并允许臂路径计算 在抓握控制过程的后期执行处理以提高抓握性能。
    • 50. 发明申请
    • WALKING CONTROL APPARATUS AND METHOD OF ROBOT
    • 摇摆控制装置和机器人的方法
    • US20120158182A1
    • 2012-06-21
    • US13280586
    • 2011-10-25
    • Ju Suk LeeKyung Shik RohWoong KwonJae Ho Park
    • Ju Suk LeeKyung Shik RohWoong KwonJae Ho Park
    • G05B15/00
    • B25J9/162G05B2219/40244G05D2201/0217
    • A walking control apparatus and method of a robot. The walking control method include confirming a swing leg and a support leg by judging a walking state of the robot when a walking velocity of the robot and a walking command are received by the robot, generating reference pitch knot points of a hip joint unit of the swing leg based on the walking state and the walking velocity of the robot, generating a target pitch angle trajectory of the hip joint unit of the swing leg using the reference pitch knot points, calculating torques tracking the target pitch angle trajectory, and outputting the torques to the hip joint unit of the swing leg to control the walking velocity of the robot. The walking velocity of the robot is rapidly and easily changed by adjusting at least one of a step length and a step time.
    • 一种机器人的行走控制装置和方法。 步行控制方法包括:当机器人的步行速度和行走命令由机器人接收时,通过判断机器人的行走状态来判断摆动腿和支撑腿,生成髋关节单元的基准节点 基于步行状态和所述机器人的步行速度进行摆动腿,使用所述基准节距点产生所述摆动腿的髋关节单元的目标俯仰角轨迹,计算跟踪所述目标俯仰角轨迹的扭矩,并输出所述转矩 到摆动腿的髋关节单元以控制机器人的步行速度。 通过调整步长和步进时间中的至少一个来快速且容易地改变机器人的步行速度。