会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 47. 发明授权
    • Trees of classifiers for detecting email spam
    • 用于检测电子邮件垃圾邮件的分类树
    • US07930353B2
    • 2011-04-19
    • US11193691
    • 2005-07-29
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • G06F15/16
    • H04L51/12
    • Decision trees populated with classifier models are leveraged to provide enhanced spam detection utilizing separate email classifiers for each feature of an email. This provides a higher probability of spam detection through tailoring of each classifier model to facilitate in more accurately determining spam on a feature-by-feature basis. Classifiers can be constructed based on linear models such as, for example, logistic-regression models and/or support vector machines (SVM) and the like. The classifiers can also be constructed based on decision trees. “Compound features” based on internal and/or external nodes of a decision tree can be utilized to provide linear classifier models as well. Smoothing of the spam detection results can be achieved by utilizing classifier models from other nodes within the decision tree if training data is sparse. This forms a base model for branches of a decision tree that may not have received substantial training data.
    • 利用分类器模型填充的决策树利用电子邮件的每个功能使用单独的电子邮件分类器来提供增强的垃圾邮件检测。 这通过定制每个分类器模型提供了更高的垃圾邮件检测的概率,以便于在逐个特征的基础上更准确地确定垃圾邮件。 分类器可以基于诸如逻辑回归模型和/或支持向量机(SVM)等线性模型来构建。 分类器也可以基于决策树构建。 基于决策树的内部和/或外部节点的“复合特征”也可以用于提供线性分类器模型。 垃圾邮件检测结果的平滑可以通过使用来自决策树内的其他节点的分类器模型来实现,如果训练数据是稀疏的。 这形成了可能没有接收到大量训练数据的决策树的分支的基本模型。
    • 50. 发明申请
    • FALSE DISCOVERY RATE FOR GRAPHICAL MODLES
    • 图形模型的虚拟发现率
    • US20090106172A1
    • 2009-04-23
    • US11873440
    • 2007-10-17
    • David E. HeckermanJennifer ListgartenCarl M. Kadie
    • David E. HeckermanJennifer ListgartenCarl M. Kadie
    • G06F15/18
    • G06N7/005
    • The claimed subject matter provides systems and/or methods that determines a number of non-spurious arcs associated with a learned graphical model. The system can include devices and mechanisms that utilize learning algorithms and datasets to generate learned graphical models and graphical models associated with null permutations of the datasets, ascertaining the average number of arcs associated with the graphical models associated with null permutations of the datasets, enumerating the total number of arcs affiliated with the learned graphical model, and presenting a ratio of the average number of arcs to the total number of arcs, the ratio indicative of the number of non-spurious arcs associated the learned graphical model.
    • 所要求保护的主题提供确定与学习的图形模型相关联的多个非虚假​​弧的系统和/或方法。 该系统可以包括利用学习算法和数据集来生成学习图形模型和与数据集的零排列相关联的图形模型的装置和机制,确定与与数据集的零排列相关联的图形模型相关联的平均弧数,列举 与所学习的图形模型相关联的弧的总数,并且呈现平均弧数与总弧数的比率,该比率表示与所学习的图形模型相关联的非虚假弧的数量。