会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Component having cooling channel with hourglass cross section
    • 具有沙漏横截面的冷却通道的部件
    • US09017027B2
    • 2015-04-28
    • US13760107
    • 2013-02-06
    • Christian X. CampbellChing-Pang Lee
    • Christian X. CampbellChing-Pang Lee
    • F01D5/18F01D25/12F28F3/04F01D5/14F28F7/02
    • F01D5/183F01D5/147F01D5/187F01D25/12F05D2240/304F05D2250/13F05D2260/2214F28F3/048F28F7/02
    • A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).
    • 冷却通道(36,36B,63-66)冷却部件(20,60)的外壁(41,43)的内表面(48,50)。 通道的内侧表面(52,54)会聚到腰部(W2),形成沙漏形的横向轮廓(46)。 内表面(48,50)可具有与冷却剂流(22)对准的翅片(44)。 翅片可以具有在内表面(48,50)的中间宽度处最高的横向轮廓(56A,56B)。 紊流器(92)可以设置在通道的侧表面(52,54)上,并且可以促使冷却剂流向内表面(48,50)。 每个湍流器(92)可以具有限定冷却通道的腰部的峰(97)。 每个湍流器可以具有凸起的上游侧(93)。 这些元件增加通道的角部(C)中的冷却剂流动,以更均匀且有效地冷却外壁(41,43)。
    • 43. 发明申请
    • Four-Wall Turbine Airfoil with Thermal Strain Control for Reduced Cycle Fatigue
    • 具有热应变控制以减少循环疲劳的四壁涡轮机翼型
    • US20110236221A1
    • 2011-09-29
    • US12732386
    • 2010-03-26
    • Christian X. Campbell
    • Christian X. Campbell
    • F01D5/18
    • F01D5/148F01D5/187F05D2300/50212
    • A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).
    • 一种具有热膨胀控制机构的涡轮机翼(20B),其在操作加热下增加翼型弧(60,61)。 翼型件具有四壁几何形状,包括压力侧外壁和内壁(26,28B)以及吸力侧外壁和内壁(32,34B)。 它在外壁和内壁之间具有近壁冷却通道(31F,31A,33F,33A)。 机翼中的冷却流体流动图案(50C,50W,50H)使得压力侧内壁(28B)在操作加热下的曲率增加。 压力侧内壁(28B)比在外倾变形时与其相反的壁(26,34B)厚,因此它与吸力侧外壁(32)协调地支配它们,并且机翼外倾角增大。 这样就将最大应力区域47从吸入侧外壁32吸入吸入侧内壁34B和压力侧外壁26。
    • 44. 发明申请
    • MODULAR TURBINE AIRFOIL AND PLATFORM ASSEMBLY WITH INDEPENDENT ROOT TEETH
    • 模块化涡轮机空气和平台组装,具有独立的根部
    • US20110142639A1
    • 2011-06-16
    • US12793935
    • 2010-06-04
    • Christian X. CampbellDaniel O. DaviesDarryl Eng
    • Christian X. CampbellDaniel O. DaviesDarryl Eng
    • F01D5/18F01D5/00
    • F01D5/147F01D5/081F01D5/3007F01D11/008
    • A turbine airfoil (22E-H) extends from a shank (23E-H). A platform (30E-H) brackets or surrounds a first portion of the shank (23E-H). Opposed teeth (33, 35) extend laterally from the platform (30E-H) to engage respective slots (50) in a disk. Opposed teeth (25, 27) extend laterally from a second portion of the shank (29) that extends below the platform (30E-H) to engage other slots (52) in the disk. Thus the platform (30E-H) and the shank (23E-H) independently support their own centrifugal loads via their respective teeth. The platform may be formed in two portions (32E-H, 34E-H), that are bonded to each other at matching end-walls (37) and/or via pins (36G) passing through the shank (23E-H). Coolant channels (41, 43) may pass through the shank beside the pins (36G).
    • 涡轮机翼(22E-H)从柄(23E-H)延伸。 平台(30E-H)支架或围绕柄部(23E-H)的第一部分。 相对的齿(33,35)从平台(30E-H)横向地延伸以与盘中的相应的槽(50)接合。 相对的齿(25,27)从在所述平台(30E-H)下方延伸的所述柄(29)的第二部分横向延伸,以接合所述盘中的其它狭槽(52)。 因此,平台(30E-H)和柄(23E-H)通过其相应的齿独立地支撑它们自己的离心载荷。 平台可以形成为两个部分(32E-H,34E-H),它们在通过柄(23E-H)的匹配端壁(37)和/或通孔销(36G)处彼此结合。 冷却剂通道(41,43)可以穿过销(36G)旁边的柄。
    • 47. 发明授权
    • Turbine engine ring seal
    • 涡轮发动机环密封
    • US07726936B2
    • 2010-06-01
    • US11492590
    • 2006-07-25
    • Douglas A. KellerSteven J. VanceChristian X. Campbell
    • Douglas A. KellerSteven J. VanceChristian X. Campbell
    • F04D29/08
    • F01D11/12F05D2230/60F05D2240/11
    • Aspects of the invention relate to a ring seal for a turbine engine. The ring seal can be made up of a plurality of circumferentially abutted ring seal segments. Each ring seal segment can comprise a plurality of individual channels. The channels can be generally U-shaped in cross-section with a forward span, and aft span and an extension connecting therebetween. The channels can be positioned such that the aft span of one channel can substantially abut the forward span of another channel. The plurality of separate channels can be detachably coupled to each other by, for example, a plurality of pins. The ring seal segment according to aspects of the invention can facilitate numerous advantageous characteristics including greater material selection, selective cooling, improved serviceability, and reduced blade tip leakage. Moreover, the configuration is well suited to handle the operational loads of the turbine.
    • 本发明的方面涉及一种用于涡轮发动机的环形密封件。 环形密封件可以由多个周向邻接的环形密封段组成。 每个环形密封片段可以包括多个单独的通道。 通道可以具有大致U形的横截面,具有前跨距,后跨距和延伸部之间的连接。 通道可以被定位成使得一个通道的后跨距可以基本上抵靠另一通道的前跨。 多个单独的通道可以通过例如多个销可拆卸地彼此联接。 根据本发明的方面的环形密封段可以促进许多有利的特征,包括更大的材料选择,选择性冷却,改进的可使用性和减小的叶片尖端泄漏。 此外,该构造非常适合于处理涡轮机的操作负载。
    • 50. 发明授权
    • Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue
    • 具有热应变控制的四壁涡轮机翼型,可减少循环疲劳
    • US08535004B2
    • 2013-09-17
    • US12732386
    • 2010-03-26
    • Christian X. Campbell
    • Christian X. Campbell
    • F01D5/08F01D5/18
    • F01D5/148F01D5/187F05D2300/50212
    • A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).
    • 一种具有热膨胀控制机构的涡轮机翼(20B),其在操作加热下增加翼型弧(60,61)。 翼型件具有四壁几何形状,包括压力侧外壁和内壁(26,28B)以及吸力侧外壁和内壁(32,34B)。 它在外壁和内壁之间具有近壁冷却通道(31F,31A,33F,33A)。 翼型件中的冷却流体流动模式(50C,50W,50H)使得压力侧内壁(28B)在操作加热下的曲率增加。 压力侧内壁(28B)比在外倾变形时与其相反的壁(26,34B)更厚,因此它与吸力侧外壁(32)协调地支配它们,并且机翼外倾角增大。 这样就将最大应力区域47从吸入侧外壁32吸入吸入侧内壁34B和压力侧外壁26。