会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明专利
    • 測光のための較正方法
    • 对于光度校正方法
    • JP2016527485A
    • 2016-09-08
    • JP2016518975
    • 2014-06-10
    • エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaftエフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft
    • ホルストマン マルティンホルストマン マルティンラング フリドルラング フリドル
    • G01N35/00G01N21/27G01N21/78G01N33/483
    • G01N33/96G01J1/0295G01N21/274G01N21/75G01N33/487G01N35/00693G01N2201/12746G01N2496/00
    • 本発明は、生体試料の物理特性を決定する方法を提供する。この方法は、第1の測光モジュール(210)とともに自動分析装置(202)を用い、第1のロットの試薬(208´)の予備較正信号(306)の集合を取得するステップ(100)と、第2の測光モジュール(210´)とともに較正分析装置(302)を用い、第1のロットの試薬の信号の基準集合(310)を取得するステップ(102)と、予備較正信号から信号の基準集合を減算することによって、モジュール特異的要素の集合(224)を決定するステップ(104)と、第2の測光モジュールを用い、第2のロットの試薬の信号のロット特異的集合(226)を取得するステップ(106)と、モジュール特異的要素の集合及び信号のロット特異的集合を用いて、第1の測光モジュールのロット較正値(228)を決定するステップ(108)と、第1の測光モジュール及び第2のロットの試薬を用いて、生体試料の測定信号(230)を取得するステップ(110)と、測定信号(230)及びロット較正値(228)を用いて、生体試料の物理特性(232)を決定するステップ(112)と、を含む。【選択図】図3
    • 本发明提供了用于确定生物样品的物理性质的方法。 该方法包括使用自动分析仪(202)与所述第一计量模块(210)的,获得所述第一批次(208“)(100)的试剂的一组预校准信号的(306), 与第二计量模块(210“)使用的校准分析仪(302),用于获取所述第一很多(310)的信号试剂的参考集的步骤(102),从所述初步校准信号的信号的参考集 通过减去获取步骤(104),以确定一组模块的特定元素(224),利用第二计量模块,特定于批次的组的第二大量的试剂的信号(226) 一个步骤(106),其通过使用特定批次的套组和信号模块特定的组分,和步骤(108),以确定所述第一光测模块(228),第一光测模块的很多校准值 以及使用所述第二批量的试剂,以获取生物样本的测量信号(230)步骤 包括(110),所述测量信号(230)和使用(228)很多校准值,用于确定生物样品(232)的物理性质的步骤(112),所述。 点域
    • 32. 发明申请
    • METHODS AND SYSTEMS FOR PURE DYE INSTRUMENT NORMALIZATION
    • 纯正仪器仪表的方法和系统
    • WO2016127090A1
    • 2016-08-11
    • PCT/US2016/016832
    • 2016-02-05
    • LIFE TECHNOLOGIES CORPORATION
    • MARKS, Jeffrey
    • G01N21/27G01N21/64
    • C12Q1/686G01N21/274G01N21/6428G01N21/6452G01N2021/6421G01N2201/04G01N2201/068G01N2201/12746
    • The present teachings relate to a method and system for normalizing spectra across multiple instruments. The method (800) comprises at least one reference instrument and a test instrument. Each instrument comprises at least one excitation filter and at least one emission filter arranged in pairs. Each instrument further comprises a pure dye plate comprising a plurality of wells. Each well contains a plurality of dyes where each dye comprises a fluorescent component. Fluorescent spectra are obtained from each instrument (805, 820) for each dye across multiple filter combinations to contribute to a pure dye matrix Mref for the reference instrument and pure dye matrix M for the test instrument. The pure dye spectra can then be multiplied by correction factors (840) for each filter pair to result in corrected pure dye spectra, then normalized (845) and the multicomponenting data can be extracted (850).
    • 本教导涉及用于在多个仪器上归一化光谱的方法和系统。 方法(800)包括至少一个参考仪器和测试仪器。 每个仪器包括至少一个激励滤波器和成对布置的至少一个发射滤波器。 每个仪器还包括包含多个孔的纯染料板。 每个孔含有多种染料,其中每种染料包含荧光组分。 对于每种染料,通过多个过滤器组合从每个仪器(805,820)获得荧光光谱,以有助于参考仪器的纯染料矩阵Mref和测试仪器的纯染料矩阵M. 然后可以将纯染料光谱乘以每个过滤器对的校正因子(840),以产生校正的纯染料光谱,然后归一化(845),并且可以提取多组分数据(850)。
    • 34. 发明申请
    • RE-CALIBRATION OF AB NDIR GAS SENSORS
    • AB NDIR气体传感器的重新校准
    • WO2012166585A2
    • 2012-12-06
    • PCT/US2012/039539
    • 2012-05-25
    • AIRWARE, INC.WONG, Jacob, Y.
    • WONG, Jacob, Y.
    • G01D18/00G01J5/10
    • G01J3/42G01J3/28G01N21/274G01N21/3504G01N21/61G01N2201/0662G01N2201/12746
    • Absorption-biased NDIR gas sensors can be recalibrated by adjusting a calibration curve obtained from a gamma ratio ("G") that has been normalized by the gamma ratio when no sample gas is present in the sample chamber ("G o "), G being the ratio of a signal channel output ("V s ") of the NDIR gas sensor divided by a reference channel output ("V R ") of the NDIR gas sensor. An AB NDIR gas sensor uses an identical spectral narrow band pass filter for wavelength selection for both a signal channel having a signal channel pathlength and a reference channel having a reference channel pathlength and an absorption bias is applied to the signal channel by making the signal channel path length longer than the reference channel pathlength. Recalibration can be achieved by adjusting Go based upon a reversed calibration curve algorithm that uses a concentration of sample gas determined by a master NDIR gas sensor. Alternatively, the NDIR gas sensor can be self- recalibrating by using a stored standard gamma ratio and a measured standard gamma ratio and a self-calibration algorithm to correct the calibration curve.
    • 吸收偏置的NDIR气体传感器可以通过调节从样品室中没有样品气体(“Go”)已经被γ比值归一化的伽马比(“G”)获得的校准曲线,G为 NDIR气体传感器的信号通道输出(“Vs”)除以NDIR气体传感器的参考通道输出(“VR”)的比率。 AB NDIR气体传感器使用相同的光谱窄带通滤波器用于具有信号通道路径长度的信号通道和具有参考通道路径长度的参考通道的波长选择,并且通过使信号通道将吸收偏压施加到信号通道 路径长度大于参考通道路径长度。 可以通过基于使用由主NDIR气体传感器确定的样品气体浓度的反向校准曲线算法调整Go来实现重新校准。 或者,NDIR气体传感器可以通过使用存储的标准伽马比率和测量的标准伽马比率以及自校准算法来校正校准曲线来自我重新校准。
    • 36. 发明申请
    • METHODS FOR CONTROLLING ONE OR MORE PARAMETERS OF A FLOW CYTOMETER TYPE MEASUREMENT SYSTEM
    • 控制流量计式测量系统的一个或多个参数的方法
    • WO2005017499A3
    • 2005-08-18
    • PCT/US2004026225
    • 2004-08-13
    • LUMINEX CORPROTH WAYNE DMOORE DOUGLAS E
    • ROTH WAYNE DMOORE DOUGLAS E
    • G01N15/14
    • G01N15/1404G01N15/1012G01N21/645G01N2015/1415G01N2015/1477G01N2201/12746
    • Various methods for controlling one or more parameters of a flow cytometer type measurement system are provided. One embodiment includes monitoring parameter(s) of the measurement system during measurements of sample microspheres. The method also includes altering the parameter(s) in real time based on the monitoring. Another method includes monitoring a temperature proximate to the measurement system. One such method includes altering a bias voltage of an avalanche photo diode in response to the temperature using empirically derived data. A different such method includes altering output signals of a photomultiplier tube in response to the temperature using a characteristic curve. Some methods include monitoring a temperature of a fluid, in which sample microspheres are disposed, that will flow through the flow cytometer type measurement system. This method also includes determining a velocity of the sample microspheres in the measurement system from a viscosity of the fluid at the temperature.
    • 提供了用于控制流式细胞仪型测量系统的一个或多个参数的各种方法。 一个实施例包括在样品微球的测量期间监测测量系统的参数。 该方法还包括基于监视实时更改参数。 另一种方法包括监测靠近测量系统的温度。 一种这样的方法包括使用经验导出的数据来响应于温度来改变雪崩光电二极管的偏置电压。 不同的这种方法包括使用特性曲线响应于温度改变光电倍增管的输出信号。 一些方法包括监测将流过流式细胞仪类型测量系统的流体样品微球的设置温度。 该方法还包括从该温度下的流体的粘度确定测量系统中的样品微球的速度。