会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Optical semiconductor device
    • 光半导体器件
    • US07791104B2
    • 2010-09-07
    • US11874980
    • 2007-10-19
    • Eitaro IshimuraYoshikazu Tanaka
    • Eitaro IshimuraYoshikazu Tanaka
    • H01L31/304
    • H01L31/107H01L31/022416H01L31/03046Y02E10/544
    • An n-type InGaAs light absorbing layer and an n-type InP layer (first conductivity type semiconductor layer), which is a window layer, and a multiplication layer are multilayered one atop another on an n-type InP substrate. By selectively diffusing impurities and implanting ions, a p-type InP region second conductivity type semiconductor region) is formed on a part of the top surface of the n-type InP layer. The top surfaces of the n-type InP layer and p-type InP region are covered with a surface protection film. A cathode electrode (first electrode) is connected to the underside of the n-type InP substrate. A ring-shaped anode electrode (second electrode) is connected to the top surface of the p-type InP region. A low-voltage electrode surrounds the anode electrode. A voltage lower than that of the cathode electrode his applied to this low-voltage electrode.
    • 作为窗口层的n型InGaAs光吸收层和n型InP层(第一导电型半导体层)和倍增层在n型InP衬底上另外层叠。 通过选择性地扩散杂质和注入离子,在n型InP层的顶表面的一部分上形成p型InP区第二导电型半导体区)。 n型InP层和p型InP区的顶表面被表面保护膜覆盖。 阴极(第一电极)连接到n型InP衬底的下侧。 环形阳极电极(第二电极)连接到p型InP区域的顶表面。 低压电极围绕阳极电极。 电压低于施加到该低压电极的阴极的电压。
    • 32. 发明授权
    • Semiconductor light-receiving device and manufacturing method thereof
    • 半导体光接收装置及其制造方法
    • US07719028B2
    • 2010-05-18
    • US12103280
    • 2008-04-15
    • Eiji YagyuEitaro IshimuraMasaharu Nakaji
    • Eiji YagyuEitaro IshimuraMasaharu Nakaji
    • H01L31/0328
    • H01L31/107H01L31/03046H01L31/1035H01L31/109H01L31/1844Y02E10/544
    • A semiconductor light-receiving device and its manufacturing method are provided which are capable of suppressing dark current and deterioration. Semiconductor crystals were sequentially grown over an n-type InP substrate, including an n-type InP buffer layer, an undoped GaInAs light absorption layer, an undoped InP diffusion buffer layer, and a p-type InP window layer. Next, a first mesa was formed by removing a part from the p-type InP window layer to the n-type InP buffer layer with a Br-based etchant having low etching selectivity, so as to form a sloped “normal” mesa structure. Next, a second mesa having a smaller diameter than the first mesa was formed by dry etching, by precisely removing a part from the p-type InP window layer to a certain mid position of the undoped InP diffusion buffer layer.
    • 提供能够抑制暗电流和劣化的半导体光接收装置及其制造方法。 半导体晶体依次生长在n型InP衬底上,包括n型InP缓冲层,未掺杂的GaInAs光吸收层,未掺杂的InP扩散缓冲层和p型InP窗口层。 接下来,通过使用具有低蚀刻选择性的Br基蚀刻剂从p型InP窗口层中去除一部分到n型InP缓冲层来形成第一台面,从而形成倾斜的“正常”台面结构。 接下来,通过干蚀刻,通过将p型InP窗口层中的一部分精确地去除到未掺杂的InP扩散缓冲层的某个中间位置,形成直径小于第一台面的第二台面。
    • 33. 发明申请
    • SEMICONDUCTOR LIGHT RECEIVING ELEMENT
    • 半导体接收元件
    • US20090218595A1
    • 2009-09-03
    • US12124337
    • 2008-05-21
    • Eitaro IshimuraMasaharu Nakaji
    • Eitaro IshimuraMasaharu Nakaji
    • H01L31/0216
    • H01L31/035236B82Y20/00H01L31/02327H01L31/105
    • A semiconductor light detecting element comprises: a semiconductor substrate having a first major surface and a second major surface opposite each other; a first reflective layer, an absorptive layer, a phase adjusting layer, and a second reflective layer sequentially disposed, from the semiconductor substrate, on the first major surface of the semiconductor substrate; and an anti-reflection film on the second major surface of the semiconductor substrate, The first reflective layer is a multilayer reflective layer including laminated semiconductor layers having different refractive indices; the absorptive layer has a band gap energy smaller than band gap energy of the semiconductor substrate; the phase adjusting layer has a band gap energy larger than the band gap energy of the absorptive layer; and the first reflective layer contacts the absorptive layers without intervention of other layers.
    • 半导体光检测元件包括:具有第一主表面和相互相对的第二主表面的半导体衬底; 在半导体衬底的第一主表面上从半导体衬底顺序地设置第一反射层,吸收层,相位调整层和第二反射层; 以及在半导体衬底的第二主表面上的抗反射膜。第一反射层是包括具有不同折射率的叠层半导体层的多层反射层。 吸收层具有比半导体衬底的带隙能更小的带隙能量; 相位调整层的带隙能量大于吸收层的带隙能量; 并且第一反射层接触吸收层而不介入其它层。
    • 34. 发明授权
    • Avalanche photodiode
    • 雪崩光电二极管
    • US07538367B2
    • 2009-05-26
    • US11515857
    • 2006-09-06
    • Eiji YagyuEitaro IshimuraMasaharu Nakaji
    • Eiji YagyuEitaro IshimuraMasaharu Nakaji
    • H01L29/739H01L31/0328H01L31/0336H01L31/072H01L31/109H01L29/861H01L31/107H01L29/00H01L29/864
    • H01L31/107
    • The present invention provides an avalanche photodiode capable of raising productivity. An n-type InP buffer layer, an n-type GaInAs light absorption layer, an n-type GaInAsP transition layer, an n-type InP electric field adjusting layer, an n-type InP avalanche intensifying layer, an n-type AlInAs window layer and a p-type GaInAs contact layer are grown in order on an n-type InP substrate. Next, Be is ion-injected into an annular area along the outer periphery of a light receiving area which is activated by heat treatment so as to form an inclined joint, to obtain a p-type peripheral area for preventing an edge break down. Further, Zn is selectively diffused thermally into the light receiving area until it reaches the n-type InP avalanche intensifying layer so as to form a p-type conductive area.
    • 本发明提供能够提高生产率的雪崩光电二极管。 n型InP缓冲层,n型GaInAs光吸收层,n型GaInAsP过渡层,n型InP电场调整层,n型InP雪崩增强层,n型AlInAs窗口 层和p型GaInAs接触层依次生长在n型InP衬底上。 接着,将Be沿着通过热处理而被激活的光接收区域的外周离子注入,形成倾斜接头,得到用于防止边缘破裂的p型周边区域。 此外,Zn被选择性地扩散到光接收区域中,直到其到达n型InP雪崩增强层,从而形成p型导电区域。
    • 35. 发明申请
    • Avalanche photodiode
    • 雪崩光电二极管
    • US20070096236A1
    • 2007-05-03
    • US11515857
    • 2006-09-06
    • Eiji YagyuEitaro IshimuraMasaharu Nakaji
    • Eiji YagyuEitaro IshimuraMasaharu Nakaji
    • H01L31/107
    • H01L31/107
    • The present invention provides an avalanche photodiode capable of raising productivity. An n-type InP buffer layer, an n-type GaInAs light absorption layer, an n-type GaInAsP transition layer, an n-type InP electric field adjusting layer, an n-type InP avalanche intensifying layer, an n-type AlInAs window layer and a p-type GaInAs contact layer are grown in order on an n-type InP substrate. Next, Be is ion-injected into an annular area along the outer periphery of a light receiving area which is activated by heat treatment so as to form an inclined joint, to obtain a p-type peripheral area for preventing an edge break down. Further, Zn is selectively diffused thermally into the light receiving area until it reaches the n-type InP avalanche intensifying layer so as to form a p-type conductive area.
    • 本发明提供能够提高生产率的雪崩光电二极管。 n型InP缓冲层,n型GaInAs光吸收层,n型GaInAsP过渡层,n型InP电场调整层,n型InP雪崩增强层,n型AlInAs窗口 层和p型GaInAs接触层依次生长在n型InP衬底上。 接着,将Be沿着通过热处理而被激活的光接收区域的外周离子注入,形成倾斜接头,得到用于防止边缘破裂的p型周边区域。 此外,Zn被选择性地扩散到光接收区域中,直到其到达n型InP雪崩增强层,从而形成p型导电区域。
    • 36. 发明申请
    • Avalanche photodiode
    • 雪崩光电二极管
    • US20060017129A1
    • 2006-01-26
    • US11136466
    • 2005-05-25
    • Masaharu NakajiEitaro IshimuraEiji YagyuNobuyuki Tomita
    • Masaharu NakajiEitaro IshimuraEiji YagyuNobuyuki Tomita
    • H01L29/732
    • H01L31/03046H01L31/107H01L31/1075Y02E10/544
    • An avalanche photodiode has improved low-noise characteristics, high-speed response characteristics, and sensitivity. The avalanche photodiode includes a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, a semiconductor multiplication layer interposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, and a semiconductor light-absorbing layer interposed between the semiconductor multiplication layer and the second conductivity type semiconductor layer. The avalanche photodiode further comprises a multiplication suppressing layer which suppresses multiplication of charge carriers in the semiconductor light-absorbing layer, has a thickness of 0.6 μm or less, and is located between the semiconductor light-absorbing layer and the second conductivity type semiconductor layer. The thickness of the semiconductor light-absorbing layer is 0.5 μm or more.
    • 雪崩光电二极管具有改进的低噪声特性,高速响应特性和灵敏度。 雪崩光电二极管包括第一导电类型半导体层,第二导电类型半导体层,介于第一导电类型半导体层和第二导电类型半导体层之间的半导体倍增层,以及插入在半导体乘法 层和第二导电类型半导体层。 雪崩光电二极管还包括抑制半导体光吸收层中的载流子的倍增的增殖抑制层,其厚度为0.6μm以下,位于半导体光吸收层与第二导电型半导体层之间。 半导体光吸收层的厚度为0.5μm以上。
    • 37. 发明授权
    • Semiconductor photodetector
    • 半导体光电探测器
    • US5942771A
    • 1999-08-24
    • US922597
    • 1997-09-03
    • Eitaro Ishimura
    • Eitaro Ishimura
    • H01L31/10H01L31/0232H01L31/0352H01L31/105H01L31/0304H01L31/107
    • H01L31/0232H01L31/0352
    • A semiconductor photodetector includes a semiconductor substrate of a first conductivity type; a light absorption recombination layer disposed on a front surface of the semiconductor substrate and having a band gap energy smaller than the semiconductor substrate; a first conductivity type barrier layer disposed on the light absorption recombination layer and having a band gap energy larger than the light absorption recombination layer; an undoped light absorption layer disposed on the barrier layer and having a band gap energy larger than the light absorption recombination layer and smaller than the barrier layer; an undoped window layer disposed on the light absorption layer and having a band gap energy larger than the light absorption layer; and an impurity doped region of a second conductivity type in a region extending from the window layer to the light absorption layer. A portion of incident light not absorbed in a depletion layer in the light absorption layer is absorbed by the light absorption recombination layer, and electrons and holes generated in the light absorption recombination layer recombine immediately, resulting in reduced response distortion.
    • 半导体光电检测器包括第一导电类型的半导体衬底; 光吸收复合层,其设置在所述半导体衬底的前表面上,并且具有小于所述半导体衬底的带隙能量; 设置在所述光吸收复合层上并具有比所述光吸收复合层大的带隙能量的第一导电型阻挡层; 设置在阻挡层上并具有比光吸收复合层大的能带隙能量并且小于阻挡层的未掺杂的光吸收层; 设置在所述光吸收层上并具有比所述光吸收层大的带隙能量的未掺杂窗口层; 以及在从窗口层到光吸收层延伸的区域中具有第二导电类型的杂质掺杂区域。 光吸收层中不被吸收在耗尽层中的入射光的一部分被光吸收复合层吸收,并且在光吸收复合层中产生的电子和空穴立即复合,导致响应失真减小。
    • 38. 发明授权
    • Light modulator module and method for fabricating light modulator module
    • 光调制器模块及其制造方法
    • US5602672A
    • 1997-02-11
    • US615162
    • 1996-03-12
    • Eitaro IshimuraYasunori MiyazakiMinoru Kawano
    • Eitaro IshimuraYasunori MiyazakiMinoru Kawano
    • G02F1/015G02F1/01G02F1/025G02F1/035H01S5/026H01S5/042H01S5/062H04B10/516H04B10/61H04B10/69G02F1/03G02B6/12H04B10/04
    • H04B10/50G02F1/0121G02F1/0356G02F1/025H01L2224/48091H01L2224/48137H01L2924/19107H01S5/02248H01S5/02276H01S5/0265H01S5/0427H01S5/06226
    • A light modulator module includes a submount; a semiconductor laser and a semiconductor light modulator having a signal input terminal integrated on the submount, the semiconductor laser outputting laser light and the semiconductor light modulator modulating the laser light in response to a high-frequency signal input to the signal input terminal; a strip line for transmitting the high-frequency signal, the strip line having first and second terminals, the second terminal receiving the high-frequency signal; a terminating resistor terminating the strip line and having opposed first and second ends with the second end being grounded; a first wire connecting the signal input terminal of the semiconductor light modulator to the first terminal of the strip line; and a second wire connecting the first end of the terminating resistor to the signal input terminal of the semiconductor light modulator. In this structure, the inductances of the first and second wires are present between the signal supply and the terminating resistor. When the frequency of the signal is increased, current flowing in the terminating resistor decreases, compensating for an increase in current flowing through the light modulator, whereby the frequency dependence of the total current is reduced. Deviation of impedance from a prescribed value and return loss are reduced.
    • 光调制器模块包括底座; 半导体激光器和半导体光调制器,其具有集成在所述基座上的信号输入端子,所述半导体激光器输出激光和所述半导体光调制器响应于输入到所述信号输入端子的高频信号而调制所述激光; 用于发送高频信号的带状线,带状线具有第一和第二端子,第二端子接收高频信号; 端接电阻终止带状线并且具有相对的第一端和第二端,其第二端接地; 将半导体光调制器的信号输入端子连接到带状线的第一端子的第一线; 以及将终端电阻的第一端连接到半导体光调制器的信号输入端的第二线。 在这种结构中,第一和第二导线的电感存在于信号电源和终端电阻之间。 当信号的频率增加时,流过终端电阻的电流减小,补偿流过光调制器的电流的增加,从而降低总电流的频率依赖性。 阻抗与规定值的偏差和回波损耗减小。
    • 39. 发明授权
    • Semiconductor light intensity modulator
    • 半导体光强调制器
    • US5528413A
    • 1996-06-18
    • US179712
    • 1994-01-11
    • Eitaro Ishimura
    • Eitaro Ishimura
    • G02F1/015G02F1/025G02F1/03
    • G02F1/025G02F2001/0154G02F2001/0157G02F2203/255
    • A semiconductor light intensity modulator utilizing the electric field absorbing effect, includes a light absorption layer which absorbs light due to the electric field absorption effect and a phase correcting semiconductor layer to which an electric field is applied independently from the light absorption layer, having a larger energy band gap than that of the light absorption layer disposed in the light waveguide path or in the vicinity thereof, of the semiconductor light intensity modulator.In this construction, by adjusting the refractive index of the phase correcting semiconductor layer and the length of the light waveguide path, the change in the refractive index in the light absorption layer can be cancelled, whereby a semiconductor light intensity modulator free of phase modulation is obtained.
    • 利用电场吸收效应的半导体光强调制器包括由于电场吸收效应吸收光的光吸收层和独立于光吸收层施加电场的相位修正半导体层,具有较大的 能量带隙比设置在光波导路径中或其附近的光吸收层的能带隙高。 在这种结构中,通过调整相位校正半导体层的折射率和光波导路径的长度,可以消除光吸收层的折射率变化,由此无相位调制的半导体光强度调制器 获得。