会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 33. 发明申请
    • SCAVANGING METAL STACK FOR A HIGH-K GATE DIELECTRIC
    • 用于高K栅介质的SCAVANGING金属叠层
    • US20100320547A1
    • 2010-12-23
    • US12487248
    • 2009-06-18
    • Takashi AndoChanghwan ChoiMartin M. FrankVijay Narayanan
    • Takashi AndoChanghwan ChoiMartin M. FrankVijay Narayanan
    • H01L29/78H01L21/314H01L21/336
    • H01L21/28088H01L29/4966H01L29/517H01L29/518H01L29/665H01L29/6659H01L29/7833
    • A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
    • 高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。
    • 37. 发明授权
    • Replacement metal gate with a conductive metal oxynitride layer
    • 替代金属栅极与导电金属氧氮化物层
    • US08404530B2
    • 2013-03-26
    • US13177692
    • 2011-07-07
    • Takashi AndoVijay Narayanan
    • Takashi AndoVijay Narayanan
    • H01L21/338
    • H01L21/28088H01L21/28176H01L29/4966H01L29/513H01L29/517H01L29/518H01L29/66545H01L29/66628H01L29/66772H01L29/78654
    • A disposable gate structure and a gate spacer are formed on a semiconductor substrate. A disposable gate material portion is removed and a high dielectric constant (high-k) gate dielectric layer and a metal nitride layer are formed in a gate cavity and over a planarization dielectric layer. The exposed surface portion of the metal nitride layer is converted into a metal oxynitride by a surface oxidation process that employs exposure to ozonated water or an oxidant-including solution. A conductive gate fill material is deposited in the gate cavity and planarized to provide a metal gate structure. Oxygen in the metal oxynitride diffuses, during a subsequent anneal process, into a high-k gate dielectric underneath to lower and stabilize the work function of the metal gate without significant change in the effective oxide thickness (EOT) of the high-k gate dielectric.
    • 在半导体衬底上形成一次性栅极结构和栅极间隔物。 去除一次性栅极材料部分,并且在栅极腔中和平坦化介电层上形成高介电常数(高k)栅极电介质层和金属氮化物层。 金属氮化物层的暴露表面部分通过使用暴露于臭氧化水或含氧化剂的溶液的表面氧化工艺转化为金属氮氧化物。 导电栅极填充材料沉积在栅极腔中并被平坦化以提供金属栅极结构。 金属氧氮化物中的氧在随后的退火过程中扩散到下面的高k栅极电介质中,以降低和稳定金属栅极的功函数,而不会在高k栅极电介质的有效氧化物厚度(EOT)上显着变化 。