会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Gallium arsenide source follower FET logic family with diodes for
preventing leakage currents
    • 砷化镓源极跟随器FET逻辑系列具有防止漏电流的二极管
    • US5451890A
    • 1995-09-19
    • US225518
    • 1994-04-11
    • Alain J. MartinJose A. TiernoBrian Von Herzen
    • Alain J. MartinJose A. TiernoBrian Von Herzen
    • H03K19/0952H03K19/0956
    • H03K19/0952
    • The basic building block of the invention is an inverter gate consisting of two stages: The first stage is an input logic switching stage consisting of a depletion mode pull-up FET whose gate is the input node and whose source-to-drain channel is connected in series through a level-shifting Schottky diode with the source-to-drain channel of an depletion mode pull-down FET between drain and source voltage rails. The source of the pull-up FET is connected to the diode's anode while the drain of the pull-down FET is connected to the diode's cathode and is the output node of the input logic switching stage. The level-shifting diode isolates the output node from the input node, which allows the input voltage to switch rail-to-rail without causing problems. The voltage between the source and drain rails is selected so that the Schottky barrier gate of the enhancement mode pull-up transistor is barely forward biased over the threshold voltage of the Schottky barrier gate junction, so that there is very little current through the gate. The second stage is an inverting stage having an enhancement mode pull-up transistor and a depletion mode pull-down transistor whose source-to-drain channels are connected in series across the source and drain voltage rails. The gate of the pull down transistor is connected to the output node of the logic switching stage, while the source-to-drain connection between the two transistors is the output node of the gate.
    • 本发明的基本构造块是由两个阶段组成的反相器门:第一级是由耗尽型上拉FET组成的输入逻辑开关级,其栅极是输入节点并且源极 - 漏极通道连接 通过电平移位肖特基二极管串联,在漏极和源极电压轨之间具有耗尽型下拉FET的源极到漏极通道。 上拉FET的源极连接到二极管的阳极,而下拉FET的漏极连接到二极管的阴极,并且是输入逻辑开关级的输出节点。 电平移位二极管将输出节点与输入节点隔离,这允许输入电压切换轨到轨而不会引起问题。 选择源极和漏极之间的电压,使得增强模式上拉晶体管的肖特基势垒栅极不会在肖特基势垒栅极结的阈值电压上正向偏置,使得通过栅极的电流非常小。 第二级是具有增强型上拉晶体管和耗尽型下拉晶体管的反相级,其源极至漏极通道串联连接在源极和漏极电压轨道上。 下拉晶体管的栅极连接到逻辑开关级的输出节点,而两个晶体管之间的源极到漏极连接是栅极的输出节点。
    • 40. 发明授权
    • Methods and apparatus for timing recovery from a sampled and equalized data signal
    • 用于从采样和均衡的数据信号定时恢复的方法和装置
    • US06650699B1
    • 2003-11-18
    • US09234767
    • 1999-01-21
    • Jose A. Tierno
    • Jose A. Tierno
    • H03H730
    • H04L7/0062H03L7/091H03L7/0995H04L7/0058
    • Methods and apparatus for use in a communication channel receiver for generating a sampling phase error signal for adjustment of a sampling clock signal associated with the receiver are provided. In an illustrative embodiment, a method includes generating a signal representative of a weighted linear combination of a predetermined number of samples of a received input signal. The combination is a function of the samples and tap-weights of a finite impulse response filter associated with the receiver. Next, the illustrative method includes generating an error signal representative of the difference between an equalized sequence of samples of the received input signal and a decoded sequence of samples of the received input signal. Still further, the illustrative method includes multiplying the weighted linear combination signal with the error signal to generate a phase error signal. The phase error signal is then used to generate a phase correction signal for subsequent application to the sampling clock signal. Such application serves to adjust the sampling clock signal associated with the receiver such that the sampling clock signal substantially matches a data rate associated with the input signal.
    • 提供了一种在通信信道接收机中用于生成用于调整与接收机相关联的采样时钟信号的采样相位误差信号的方法和装置。 在说明性实施例中,一种方法包括生成表示接收到的输入信号的预定数量样本的加权线性组合的信号。 该组合是与接收器相关联的有限脉冲响应滤波器的样本和抽头权重的函数。 接下来,说明性方法包括生成表示所接收的输入信号的均衡采样序列与接收到的输入信号的解码采样序列之间的差的误差信号。 此外,说明性方法包括将加权线性组合信号与误差信号相乘以产生相位误差信号。 然后使用相位误差信号产生相位校正信号,以便随后应用于采样时钟信号。 这种应用用于调整与接收机相关联的采样时钟信号,使得采样时钟信号基本上与输入信号相关联的数据速率匹配。