会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 34. 发明申请
    • Diagnostic apparatus and diagnostic method for an internal combustion engine
    • 内燃机诊断装置及诊断方法
    • US20070144145A1
    • 2007-06-28
    • US11644035
    • 2006-12-22
    • Rie TakatsutoHiroshi Katoh
    • Rie TakatsutoHiroshi Katoh
    • F01N3/00F01N7/00
    • F02D41/0255F01N11/007F02D37/02F02D41/22F02D2200/0804Y02T10/26
    • A diagnostic apparatus for an internal combustion engine is disclosed herein. In one embodiment, the diagnostic apparatus comprises a catalytic converter and a controller. The catalytic converter is disposed in an exhaust passage of an engine and treats an exhaust gas component in the exhaust gas. The controller is adapted to perform a number of functions. More specifically, the controller is adapted to operate the engine with an engine control parameter to increase catalyst temperature of the catalytic converter during a cold engine condition. The controller is further adapted to calculate a temperature factor indicative to temperature increase of the catalyst based on the engine control parameter. The controller is further adapted to estimate the amount of the exhaust gas component flowing out of the catalytic converter based on the temperature factor. Finally, in one embodiment, the controller is adapted to determine malfunction of the engine operation to increase catalyst temperature of the catalytic converter based on the amount of exhaust gas component flowing out of the catalytic converter. A diagnostic method is also disclosed.
    • 本文公开了一种用于内燃机的诊断装置。 在一个实施例中,诊断装置包括催化转化器和控制器。 催化转化器设置在发动机的排气通道中并处理废气中的排气成分。 控制器适于执行多个功能。 更具体地,控制器适于使用发动机控制参数操作发动机,以在冷发动机状态期间增加催化转化器的催化剂温度。 控制器还适于基于发动机控制参数来计算指示催化剂的温度升高的温度因子。 控制器还适于基于温度因素来估计从催化转化器流出的废气组分的量。 最后,在一个实施例中,控制器适于基于从催化转化器流出的废气组分的量来确定发动机操作的故障以增加催化转化器的催化剂温度。 还公开了一种诊断方法。
    • 35. 发明授权
    • Engine air-fuel ratio control system
    • 发动机空燃比控制系统
    • US07181331B2
    • 2007-02-20
    • US11229574
    • 2005-09-20
    • Hiroshi Katoh
    • Hiroshi Katoh
    • B60T7/12F02B75/08
    • F02D41/062F02D41/1489
    • An engine air-fuel ratio control system is configured to use a rich air-fuel ratio immediately after starting an engine such that the air-fuel ratio converge rapidly toward a stoichiometric value and then afterwards start an air-fuel ratio feedback control. Upon determining an air-fuel ratio sensor is active, a stabilization fuel quantity increasing factor that is a component of a target air-fuel ratio revising coefficient is decreased at a higher rate than the rate used before the air-fuel ratio sensor was determined to be active. Air-fuel ratio feedback control is started when the air-fuel ratio corresponds to a stoichiometric air-fuel ratio. After starting air-fuel ratio feedback control, an unburned fuel quantity compensating value is set based on the stabilization fuel quantity increasing factor in effect at that point in time and added to the target air-fuel ratio revising coefficient while, simultaneously, the stabilization fuel quantity increasing factor is set to zero.
    • 发动机空燃比控制系统被配置为在启动发动机之后立即使用浓空燃比,使得空燃比迅速地朝向化学计量值收敛,然后开始空燃比反馈控制。 在确定空燃比传感器有效时,作为目标空燃比修正系数的分量的稳定化燃料量增加系数以比空燃比传感器确定前的使用率更高的速度降低 积极点。 当空燃比对应于理论空燃比时,开始空燃比反馈控制。 在开始空燃比反馈控制之后,基于在该时间点上有效的稳定化燃料量增加因子来设定未燃燃料量补偿值,并将其与目标空燃比修正系数相加,同时确定稳定燃料 数量增加因子设置为零。
    • 36. 发明授权
    • Engine air-fuel ratio control
    • 发动机空燃比控制
    • US06619277B2
    • 2003-09-16
    • US10170743
    • 2002-06-14
    • Hiroshi Katoh
    • Hiroshi Katoh
    • F02D4100
    • F02D41/1403F02D41/1454F02D2041/1415F02D2041/1433F02D2041/389G05B13/047
    • A state quantity &sgr;(n) of a switching function is calculated based on a predetermined target air-fuel ratio TGABF, a detected air-fuel ratio AFSAF detected by a sensor (16), and a state equation derived from a transfer function Geng(q) of a secondary discrete system, representing the correlation between an air-fuel ratio of an air fuel mixture in a combustion chamber (1A) and the detected air-fuel ratio (S14). The air-fuel ratio is feedback corrected by applying a sliding mode control process based on the difference between the target air-fuel ratio TGABF and the detected air-fuel ratio AFSAF, and the state quantity &sgr;(n) (S14-S21). The response and robustness of the air-fuel ratio control are enhanced by using a physical model of the secondary discrete system.
    • 基于预定的目标空燃比TGABF,由传感器(16)检测到的检测到的空燃比AFSAF和从传递函数Geng导出的状态方程式来计算切换功能的状态量sigma(n) q)表示燃烧室(1A)中的空气燃料混合物的空燃比与检测到的空燃比(S14)之间的相关性的二次离散系统。 通过基于目标空燃比TGABF和检测到的空燃比AFSAF之间的差和状态量sigma(n)(S14-S21)进行滑动模式控制处理来反馈校正空燃比。 通过使用二次离散系统的物理模型来提高空燃比控制的响应和鲁棒性。
    • 38. 发明授权
    • Idle rotation speed learning control method and apparatus of an electronically controlled throttle type internal combustion engine
    • 一种电子控制节气门式内燃机的空转转速学习控制方法和装置
    • US06250282B1
    • 2001-06-26
    • US09384402
    • 1999-08-27
    • Hiroyuki OsakiHajime HosoyaHiroshi KatohShigeaki KakizakiMikio Matsumoto
    • Hiroyuki OsakiHajime HosoyaHiroshi KatohShigeaki KakizakiMikio Matsumoto
    • F02D4116
    • F02D31/004
    • With an electronically controlled throttle type internal combustion engine, where a target opening of a throttle valve is set according to a required output of the engine, and the throttle valve is opened and closed with an actuator so as to obtain a target opening; air quantity learning for learning and correcting the target opening of the throttle valve so as to obtain a target intake air quantity is performed by comparing an intake air quantity estimated based on a detection value of the throttle valve opening and an actually detected intake air quantity, at the time of idling the engine. After completion of the air quantity learning, friction learning for learning and correcting the target opening of the throttle valve so as to obtain a target engine output is performed while feedback controlling the throttle valve opening so that the engine rotation speed approaches a target idle rotation speed, at the time of idling the engine. In this way, it is possible to effect control which makes the throttle valve opening correspond very accurately to the required engine output, over a long period of time.
    • 利用电子控制的节气门式内燃机,其中根据发动机的所需输出设定节气门的目标开度,并且用致动器打开和关闭节流阀,以获得目标开度; 通过比较基于节气门开度的检测值和实际检测到的进气量估计出的进气量来进行用于学习和校正节流阀的目标开度以获得目标进气量的空气量学习, 在空转发动机时。 在完成空气量学习之后,在反馈控制节气门开度使得发动机转速接近目标怠速转速的同时进行用于学习和校正节流阀的目标开度以获得目标发动机输出的摩擦学习 在空转发动机时。 以这种方式,可以实现使得节气门开度在长时间内非常准确地对应于所需发动机输出的控制。