会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Self-emission noninvasive infrared spectrophotometer with body
temperature compensation
    • 自发式无创红外分光光度计,具有体温补偿
    • US5615672A
    • 1997-04-01
    • US353099
    • 1994-12-09
    • James R. BraigDaniel S. GoldbergerBernhard B. Sterling
    • James R. BraigDaniel S. GoldbergerBernhard B. Sterling
    • G01N33/49A61B5/00A61B5/145A61B5/1455A61B5/1495G01N21/35G01N33/66
    • A61B5/1455A61B5/14532A61B5/14546G01N21/35G01N21/3581
    • A method and apparatus for monitoring glucose, ethyl alcohol and other blood constituents in a noninvasive manner. The measurements are made by monitoring infrared absorption of the desired blood constituent in the long infrared wavelength range where the blood constituent has a strong and distinguishable absorption spectrum. The long wavelength infrared energy emitted by the person as heat is monitored and the infrared absorption of particular constituents in the blood (such as glucose or blood alcohol) is measured at characteristic infrared absorption wavelengths for those constituents. The measurements are preferably synchronized with systole and diastole of the cardiac cycle so that the signal contribution caused by veins and tissues (which do not pulse) may be cancelled when a ratio of the detected signals is taken. On the other hand, if no synchronization is provided, the spectrophotometer may measure the arterial, venous and tissue constituent concentrations simultaneously, which may be desired in some circumstances. The internal "blackbody" energy level of an infrared emissions source such as a vascularized appendage prior to glucose absorption is measured and used to compensate temperature dependent effects in the concentration calculation. The internal energy level is then ratioed to the actual measured energy and used to compute the percentage of energy absorbed by the glucose. Discontinuities in the ratio are eliminated by converting the absorption measurements from voltages to watts.
    • 一种以非侵入性方式监测葡萄糖,乙醇和其他血液成分的方法和装置。 通过监测血液成分具有强烈且可区分的吸收光谱的长红外波长范围内的所需血液成分的红外吸收来进行测量。 监测由人发射的长波长红外能量作为热,并且对于那些成分在特征红外吸收波长处测量血液中特定成分(如葡萄糖或血液酒精)的红外吸收。 所述测量优选与心动周期的收缩和心律舒张同步,使得当检测到的信号的比率被采取时,可以消除由静脉和组织引起的信号贡献(其不脉冲)。 另一方面,如果不提供同步,则分光光度计可以同时测量动脉,静脉和组织成分浓度,这在某些情况下可能是期望的。 测量红外发射源的内部“黑体”能级,例如葡萄糖吸收之前的血管附着物,并用于补偿浓度计算中的温度依赖性影响。 然后将内部能量水平与实际测量的能量进行比率,并用于计算葡萄糖吸收的能量的百分比。 通过将吸收测量值从电压转换为瓦特来消除比例的不连续性。
    • 32. 发明授权
    • Sidestream infrared gas analyzer requiring small sample volumes
    • 侧流红外线气体分析仪需要较小的样品量
    • US5282473A
    • 1994-02-01
    • US976145
    • 1992-11-10
    • James R. BraigDaniel S. Goldberger
    • James R. BraigDaniel S. Goldberger
    • A61B5/083A61B5/097G01N21/05G01N21/35
    • G01N21/05A61B5/083A61B5/097G01N21/3504
    • An infrared gas analyzer implementing an optically stabilized detector in a sidestream configuration. In order to reduce the pneumatic sampling volume, an "optical funnel" or collimator is used to resize the optical aperture of a multi-channel optically stabilized detector without compromising signal strength. The smaller pneumatic volume is desirable in order to minimize the time required for a gas wavefront from the sample cell to traverse the optical aperture, thereby minimizing pneumatic response time. The geometry of the sample cell of the invention is also streamlined so that sharp corners or transitions which might induce turbulent gas flow are eliminated. The sample cell of the invention thus promotes smooth, laminar flow of aspirated respiratory gases through the optical aperture so as to preserve the temporal relationship of gas concentration wavefronts within the gas stream and to thereby allow the analyzer to exhibit a faster pneumatic response.
    • 实现侧流配置的光学稳定检测器的红外气体分析仪。 为了降低气动采样体积,使用“光漏斗”或准直器来调整多通道光学稳定检测器的光学孔径,而不会影响信号强度。 较小的气动体积是期望的,以便最小化来自样品池的气体波前穿过光学孔所需的时间,从而最小化气动响应时间。 本发明的样品池的几何形状也是流线型的,从而消除了可能引起湍流气流的尖角或过渡。 因此,本发明的样品池通过光学孔促进吸入的呼吸气体的平滑的层流,从而保持气体流中的气体浓度波前的时间关系,从而允许分析仪表现出更快的气动响应。
    • 33. 发明授权
    • Method of selecting an optical filter for a shutterless optically
stabilized capnograph
    • 选择无光闸光学稳定捕集仪的滤光片的方法
    • US5281817A
    • 1994-01-25
    • US782991
    • 1991-10-28
    • Mark L. YeldermanJames R. BraigDaniel S. Goldberger
    • Mark L. YeldermanJames R. BraigDaniel S. Goldberger
    • A61B5/083G01J1/24G01J5/12G01N21/31G01N21/35G01N21/61G01J3/51
    • G01N21/3504A61B5/083G01J1/24G01J5/12G01N2021/3166G01N2201/126
    • Methods and apparatus for constructing optically stabilized, shutterless infrared capnographs are disclosed. The capnographs of the present invention provide the absolute concentration of the constituents of the respiratory airstream of a patient, without the thermal drift problems normally associated with thermopile detectors, thereby providing a device with a high degree of accuracy. The present invention eliminates the need for a mechanical shutter to modulate the incident infrared beam and the need for a modulated source, thereby increasing the reliability and response time of the devices disclosed. Capnographs which are substantially unaffected by changes in the ambient temperature at which they operate are provided by connecting pairs of optically filtered thermopiles in series and processing the resulting differential pair. In addition, techniques are provided for selecting overlapping optical filters for use with thermopiles with a minimum level of cross-talk. A processing technique is also given which allows the concentrations of two or more airstream constituents to be separately quantified even when such overlapping optical filters are used.
    • 公开了用于构造光学稳定的无闸门红外捕集仪的方法和装置。 本发明的血氧监护仪提供了患者的呼吸气流的成分的绝对浓度,而没有通常与热电堆检测器相关的热漂移问题,从而提供高精度的装置。 本发明不需要机械快门来调制入射的红外光束和调制源的需要,从而增加所公开的设备的可靠性和响应时间。 基本上不受其工作环境温度变化影响的测井仪通过串联连接成对的光学过滤的热电堆并处理所得的差分对来提供。 另外,提供了用于选择具有最低水平的串扰的热电堆使用的重叠光学滤波器的技术。 还给出了即使使用这种重叠的光学滤波器也允许分开量化两种或更多种气流成分的浓度的处理技术。
    • 34. 发明授权
    • Method for distinguishing respiratory events in a gas analyzer
    • 用于区分气体分析仪中呼吸事件的方法
    • US5129401A
    • 1992-07-14
    • US458974
    • 1990-01-25
    • James E. CorenmanDaniel S. GoldbergerEdward M. RichardsEmil P. RojasJames R. BraigDavid A. Gallup
    • James E. CorenmanDaniel S. GoldbergerEdward M. RichardsEmil P. RojasJames R. BraigDavid A. Gallup
    • A61B5/083G01N21/31G01N21/35
    • A61B5/083G01N21/3504G01N2021/3129G01N2201/121
    • A gas analyzer system and method for detecting and displaying information of gases in a respiratory gas stream, comprising an optical bench including a gas pathway for the flow of a gas stream through the optical bench, a flow shaping inlet at the entrance to the optical bench's gas pathway, two infrared detection channel assemblies for measuring the partial pressures of the gases in the respiratory gas stream, a pressure sensor for measuring the pressure within the gas pathway, a temperature sensor for measuring the temperature within the optical bench, and a flow rate sensor for measuring the gas flow rate through the gas pathway, circuitry for processing the detected partial pressures of the gases and the measured values for pressure, temperature, and flow rate, and for providing output signals indicative of processed measured values, the detected partial pressures of the gasses, and characterization information with respect to the optical bench components; analog input circuitry for processing the signals output from the optical bench for input to analog processing circuitry; analog processing circuitry for processing and correcting at least the detected partial pressures of the gases signals for collision broadening, temperature, pressure in the gas pathway, barometric pressure, cross-correction, and characterization of the optical bench components, and providing output signals indicative of the corrected partial pressures of the gases to display processing circuitry; display processing circuitry for processing the signals for display of at least the corrected partial pressure of one gas on a cathode ray tube.
    • 一种用于检测和显示呼吸气流中的气体信息的气体分析仪系统和方法,包括一个光学台,包括用于通过光学台的气流流动的气体通道,在光学台的入口处的流动成形入口 气体通道,用于测量呼吸气流中的气体的分压的两个红外检测通道组件,用于测量气体通道内的压力的压力传感器,用于测量光学平台内的温度的温度传感器,以及流速 用于测量通过气体通路的气体流量的传感器,用于处理检测到的气体分压的电路和用于压力,温度和流速的测量值,以及用于提供指示经处理的测量值的输出信号,检测到的分压 的气体,以及关于光学台架部件的表征信息; 模拟输入电路,用于处理从光学平台输出的用于输入到模拟处理电路的信号; 模拟处理电路,用于处理和校正至少检测到的气体信号的分压,用于碰撞扩张,气体通路中的温度,压力,气压,交叉校正和光学台部件的表征,以及提供指示 校正的显示处理电路的气体分压; 显示处理电路,用于处理用于显示至少阴极射线管上的一种气体的校正分压的信号。