会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • Method for constructing covariance matrices from data features
    • 从数据特征构造协方差矩阵的方法
    • US20070133878A1
    • 2007-06-14
    • US11305427
    • 2005-12-14
    • Fatih PorikliOncel Tuzel
    • Fatih PorikliOncel Tuzel
    • G06K9/46
    • G06K9/4642G06K9/6215
    • A method constructs descriptors for a set of data samples and determines a distance score between pairs of subsets selected from the set of data samples. A d-dimensional feature vector is extracted for each sample in each subset of samples. The feature vector includes indices to the corresponding sample and properties of the sample. The feature vectors of each subset of samples are combined into a d×d dimensional covariance matrix. The covariance matrix is a descriptor of the corresponding subset of samples. Then, a distance score is determined between the two subsets of samples using the descriptors to measure a similarity between the descriptors.
    • 一种方法构建一组数据样本的描述符,并确定从该组数据样本中选择的子集对之间的距离分数。 在每个样本子集中为每个样本提取d维特征向量。 特征向量包括相应样本的索引和样本的属性。 样本的每个子集的特征向量被组合成dxd维协方差矩阵。 协方差矩阵是相应样本子集的描述符。 然后,使用描述符在两个样本子集之间确定距离分数,以测量描述符之间的相似性。
    • 34. 发明授权
    • Method for recovering low-rank matrices and subspaces from data in high-dimensional matrices
    • 从高维矩阵数据中恢复低阶矩阵和子空间的方法
    • US08935308B2
    • 2015-01-13
    • US13355335
    • 2012-01-20
    • Fatih PorikliXianbiao Shu
    • Fatih PorikliXianbiao Shu
    • G06F7/00
    • G06K9/6249
    • A method recovers an uncorrupted low-rank matrix, noise in corrupted data and a subspace from the data in a form of a high-dimensional matrix. An objective function minimizes the noise to solve for the low-rank matrix and the subspace without estimating the rank of the low-rank matrix. The method uses group sparsity and the subspace is orthogonal. Random subsampling of the data can recover subspace bases and their coefficients from a much smaller matrix to improve performance. Convergence efficiency can also be improved by applying an augmented Lagrange multiplier, and an alternating stepwise coordinate descent. The Lagrange function is solved by an alternating direction method.
    • 一种方法从高维矩阵的形式中恢复未破坏的低秩矩阵,损坏数据中的噪声和数据中的子空间。 目标函数最小化了解低级矩阵和子空间的噪声,而不估计低秩矩阵的秩。 该方法使用组稀疏,子空间正交。 数据的随机子采样可以从更小的矩阵中恢复子空间基础及其系数,以提高性能。 还可以通过应用增强的拉格朗日乘数和交替的逐步坐标下降来提高收敛效率。 拉格朗日函数通过交替方向法求解。
    • 38. 发明申请
    • Multi-Class Classification Method
    • 多类分类方法
    • US20130156300A1
    • 2013-06-20
    • US13330905
    • 2011-12-20
    • Fatih PorikliYuejie Chi
    • Fatih PorikliYuejie Chi
    • G06K9/62
    • G06K9/6227G06K9/6249
    • A test sample is classified by determining a nearest subspace residual from subspaces learned from multiple different classes of training samples, and a collaborative residual from a collaborative representation of a dictionary constructed from all of the test samples. The residuals are used to determine a regularized residual. The subspaces, the dictionary and the regularized residual are inputted into a classifier, wherein the classifier includes a collaborative representation classifier and a nearest subspace classifier, and a label is assigned to the test sample using the classifier, and wherein the regularization parameter balances a trade-off between the collaborative representation classifier the nearest subspace classifier.
    • 通过确定从多个不同类别的训练样本中学习的子空间的最近子空间残差以及来自所有测试样本构造的字典的协作表示的协作残差来分类测试样本。 残差用于确定正则化残差。 将子空间,字典和正则化残差输入到分类器中,其中分类器包括协作表示分类器和最近的子空间分类器,并且使用分类器将标签分配给测试样本,并且其中正则化参数平衡交易 在合作表示分类器之间的最近的子空间分类器。
    • 40. 发明授权
    • Method for training multi-class classifiers with active selection and binary feedback
    • 用于训练具有主动选择和二进制反馈的多类分类器的方法
    • US08401282B2
    • 2013-03-19
    • US12732225
    • 2010-03-26
    • Fatih PorikliAjay Joshi
    • Fatih PorikliAjay Joshi
    • G06K9/62G06K9/00G06K9/54G06K9/60
    • G06K9/6253G06F17/30265G06F17/3028G06K9/622
    • A multi-class classifier is trained by selecting a query image from a set of active images based on a membership probability determined by the classifier, wherein the active images are unlabeled. A sample image is selected from a set of training image based on the membership probability of the query image, wherein the training images are labeled. The query image and the sample images are displayed to a user on an output device. A response from the user is obtained with an input device, wherein the response is a yes-match or a no-match. The query image with the label of the sample image is added to the training set if the yes-match is obtained, and otherwise repeating the selecting, displaying, and obtaining steps until a predetermined number of no-match is reached to obtain the multi-class classifier.
    • 通过基于由分类器确定的成员概率从一组活动图像中选择查询图像来训练多类分类器,其中活动图像是未标记的。 基于查询图像的成员概率从一组训练图像中选择样本图像,其中训练图像被标记。 查询图像和样本图像在输出设备上显示给用户。 使用输入设备获得来自用户的响应,其中响应是是匹配或不匹配。 如果获得了是匹配,则具有样本图像的标签的查询图像被添加到训练集合,否则重复选择,显示和获得步骤,直到达到预定数量的不匹配, 类分类器。