会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 34. 发明授权
    • Process for preventing misalignment in split-gate flash memory cell
    • 用于防止分闸式闪存单元中的未对准的过程
    • US5940706A
    • 1999-08-17
    • US988764
    • 1997-12-11
    • Hung-Cheng SungDi-Son KuoYai-Fen LinChia-Ta Hsieh
    • Hung-Cheng SungDi-Son KuoYai-Fen LinChia-Ta Hsieh
    • H01L21/336H01L29/423H01L21/8247
    • H01L29/66825H01L29/42324
    • A select transistor for flash memory cells is made by the following steps. Over the blanket second dielectric layer, and an oxynitride layer form a channel mask for patterning the drain and floating gate. Etch the oxynitride layer through the mask to form a channel alignment mask down to a silicon nitride layer with a drain region opening and a floating gate opening. Etch the floating gate opening through the second dielectric layer. Form a polyoxide region in the floating gate layer at the bottom of the floating gate opening by reacting the exposed portion of the floating gate layer with a reactant. Form a drain region in the substrate. Etch away the oxynitride layer and the silicon nitride layer. Pattern the floating gate electrode by etching away the floating gate layer except below the polyoxide region. Form an interelectrode dielectric layer and a second gate electrode layer over the drain region and a portion of the polyoxide region. Form a source region in the substrate self-aligned with the polyoxide region.
    • 用于闪存单元的选择晶体管通过以下步骤进行。 在整个第二介电层上,并且氧氮化物层形成用于图案化漏极和浮置栅极的沟道掩模。 通过掩模蚀刻氧氮化物层以形成通道对准掩模,直到具有漏极区域开口和浮动开口的氮化硅层。 通过第二介电层蚀刻浮动开口。 通过使浮栅的暴露部分与反应物反应,在浮动栅极开口底部的浮栅中形成多氧化物区域。 在衬底中形成漏区。 蚀刻掉氧氮化物层和氮化硅层。 通过蚀刻除了多晶氧化物区域之外的浮栅层来对浮栅电极进行图案化。 在漏极区域和一部分多氧化物区域上形成电极间电介质层和第二栅电极层。 在与氧化物区域自对准的衬底中形成源区。
    • 35. 发明授权
    • Method of fabricating step poly to improve program speed in split gate
flash
    • 制造步骤聚合物以提高分流栅闪光中程序速度的方法
    • US5879992A
    • 1999-03-09
    • US115719
    • 1998-07-15
    • Chia-Ta HsiehYai-Fen LinHung-Cheng SungChuang-Ke YehDi-Son Kuo
    • Chia-Ta HsiehYai-Fen LinHung-Cheng SungChuang-Ke YehDi-Son Kuo
    • H01L21/336H01L29/423H01L21/8427
    • H01L29/66825H01L29/42324
    • A method is provided for forming a split-gate flash memory cell having a step poly supporting an interpoly oxide of varying thickness for the purposes of improving the over-all performance of the cell. Polyoxide is formed over portions of a first polysilicon layer which in turn is partially etched to form a step adjacent to the side-wall of a floating gate underlying the polyoxide. A spacer is next formed of a hot temperature oxide over the step poly. An interpoly oxynitride is then formed and control gate is patterned overlapping the floating gate with the intervening interpoly oxide. The step poly and the spacer thereon form proper distances between the control gate and the floating gate while keeping the distance between the poly tip and the control gate unchanged so that appropriate couplings between the control gate and the floating gate, and between the floating gate and the substrate are achieved, thus improving the over-all performance of the split-gate flash memory having a step poly.
    • 提供了一种用于形成分支栅极快闪存储器单元的方法,其具有支撑不同厚度的多晶硅氧化物的台阶聚合物,以改善电池的全部性能。 多晶氧化物形成在第一多晶硅层的部分上,该第一多晶硅层又被部分蚀刻以形成邻近聚氧化物下面的浮动栅极的侧壁的台阶。 接着在步骤poly上由热的温度氧化物形成间隔物。 然后形成间极氧氮化物,并且控制栅极被图案化与浮置栅极与介入的多晶硅氧化物重叠。 步进多晶硅和间隔件在控制栅极和浮动栅极之间形成适当的距离,同时保持多晶硅尖端和控制栅极之间的距离不变,使得控制栅极和浮动栅极之间以及浮动栅极和浮动栅极之间的适当耦合 实现了衬底,从而改进了具有阶梯聚光的分离栅极闪存的全部性能。
    • 37. 发明授权
    • Method to increase coupling ratio of source to floating gate in split-gate flash
    • 提高分流栅闪光时源极与浮栅耦合比的方法
    • US07417278B2
    • 2008-08-26
    • US11122726
    • 2005-05-05
    • Chia-Ta HsiehYai-Fen LinDi-Son KuoHung-Cheng SungJack Yeh
    • Chia-Ta HsiehYai-Fen LinDi-Son KuoHung-Cheng SungJack Yeh
    • H01L29/788
    • H01L27/11521H01L27/115H01L29/42324H01L29/66825H01L29/7885
    • A split-gate flash memory cell having a three-dimensional source capable of three-dimensional coupling with the floating gate of the cell, as well as a method of forming the same are provided. This is accomplished by first forming an isolation trench, lining it with a conformal oxide, then filling with an isolation oxide and then etching the latter to form a three-dimensional coupling region in the upper portion of the trench. A floating gate is next formed by first filling the three-dimensional region of the trench with polysilicon and etching it. The control gate is formed over the floating gate with an intervening inter-poly oxide. The floating gate forms legs extending into the three-dimensional coupling region of the trench thereby providing a three-dimensional coupling with the source which also assumes a three-dimensional region. The leg or the side-wall of the floating gate forming the third dimension provides the extra area through which coupling between the source and the floating gate is increased. In this manner, a higher coupling ratio is achieved without an increase in the cell size while at the same time alleviating the punchthrough and junction break-down of source region by sharing gate voltage along the side-wall.
    • 提供具有能够与电池的浮动栅极三维耦合的三维源的分裂栅极闪存单元及其形成方法。 这是通过首先形成隔离沟槽,用共形氧化物衬里,然后用隔离氧化物填充,然后对其进行蚀刻,以在沟槽的上部形成三维耦合区域。 接下来通过用多晶硅填充沟槽的三维区域并对其进行蚀刻来形成浮栅。 控制栅极通过中间多晶硅氧化物形成在浮动栅上。 浮栅形成延伸到沟槽的三维耦合区域中的支腿,从而提供与源也呈三维区域的三维耦合。 形成第三维的浮动栅的腿或侧壁提供了增加源极和浮动栅极之间的耦合的额外区域。 以这种方式,在不增加电池尺寸的同时实现更高的耦合比,同时通过沿着侧壁共享栅极电压来减轻源极区域的穿通和结断流。
    • 38. 发明授权
    • Source side injection programming and tip erasing P-channel split gate flash memory cell
    • 源端注入编程和引脚擦除P沟道分离栅极闪存单元
    • US06573555B1
    • 2003-06-03
    • US09587464
    • 2000-06-05
    • Yai-Fen LinDi-Son KuoHung-Cheng SungChia-Ta Hsieh
    • Yai-Fen LinDi-Son KuoHung-Cheng SungChia-Ta Hsieh
    • H01L29788
    • H01L29/42324H01L21/28273
    • A split gate P-channel flash memory cell and method of forming a split gate P-channel flash memory cell which avoids of high erasing voltage, reverse tunneling during programming, drain disturb and over erase problems, and permits shrinking the cell dimensions. The control gate has a concave top surface which intersects with the sidewalls to form a sharp edge. The cell is programmed by charging the floating gate with electrons by means of hot electron injection from the channel into the floating gate. The cell is erased by discharging the excess electrons from the floating gate into the control gate using Fowler-Nordheim tunneling. The sharp edge at the intersection of the concave top surface and the sidewalls of the floating gate produces a high electric field between the control gate and the floating gate to accomplish the Fowler-Nordheim tunneling with only moderate voltage differences between the floating gate and control gate. The P-channel flash memory cell has a higher impact ionization rage for creating hot electrons so that the distance between the source and drain junctions and the length of the floating gate can be kept small thereby permitting the dimensions of the flash memory cell to be shrunk.
    • 分裂门P沟道快闪存储单元以及形成分离栅极P沟道闪存单元的方法,其避免高擦除电压,编程期间的反向隧穿,漏极干扰和过度擦除问题,并且允许缩小单元尺寸。 控制门具有与侧壁相交以形成锋利边缘的凹顶表面。 通过从通道进入浮动栅极的热电子注入,用电子对浮动栅极充电来对单元进行编程。 使用Fowler-Nordheim隧道将多余的电子从浮动栅极放电到控制栅中来消除电池。 在凹顶表面和浮动栅极的相交处的尖锐边缘在控制栅极和浮动栅极之间产生高电场,以在浮动栅极和控制栅极之间仅具有适度的电压差来实现Fowler-Nordheim隧道 。 P沟道闪速存储单元对于产生热电子具有较高的冲击电离强度,使得源极和漏极结之间的距离和浮置栅极的长度可以保持较小,从而允许闪存单元的尺寸缩小 。