会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Optical fiber having internal partial mirrors and interferometer using
same
    • 具有内部部分反射镜和使用其的干涉仪的光纤
    • US5361383A
    • 1994-11-01
    • US783798
    • 1991-11-30
    • David B. ChangVictor Vali
    • David B. ChangVictor Vali
    • G02B6/28G01B9/02G02B6/00G02B6/26
    • G02B6/02052
    • An optical fiber disposed to partially internally reflect optical energy passing therethrough is disclosed herein. The optical fiber 10 of the present invention includes an internal partial mirror disposed to partially transmit and to partially reflect optical energy incident thereon. The internal mirror is effectively realized at an interface I of first and second fiber segments 14 and 18. The first fiber segment 14 includes a first core region 22 which circumscribes a longitudinal axis X. The first core region 22 is of a first cross-sectional area perpendicular to the longitudinal axis X. The inventive fiber 10 further includes a second fiber segment 18 in optical communication with the first fiber segment 14. The second fiber segment 18 includes a second core region 24 which circumscribes the longitudinal axis X, wherein the second core region 24 is of a second cross-sectional area perpendicular thereto.
    • 本文公开了设置成部分内部反射通过其的光能的光纤。 本发明的光纤10包括设置成部分地透射并部分地反射入射在其上的光能的内部部分镜。 在第一和第二纤维段14和18的界面I处有效地实现内部反射镜。第一纤维段14包括限定纵向轴线X的第一纤芯区域22.第一纤芯区域22是第一横截面 本发明的纤维10还包括与第一纤维段14光学连通的第二纤维段18.第二纤维段18包括限定纵轴X的第二芯区24,其中第二纤维 芯区域24具有与其垂直的第二横截面区域。
    • 24. 发明授权
    • Eccentric core optical fiber
    • 偏心芯光​​纤
    • US5224188A
    • 1993-06-29
    • US977738
    • 1992-11-12
    • Victor Vali
    • Victor Vali
    • G02B6/02
    • G02B6/02
    • An eccentric core optical fiber 10 having a cross-sectional area sufficiently large to afford ease of manipulation, yet deposed to operate in an evanescent mode, is disclosed herein. The inventive optical fiber 10 includes a fiber core 20 of a first index of refraction. The fiber core 20 circumscribes a first longitudinal axis. The optical fiber 10 of the present invention further includes fiber cladding material 30 of a second index of refraction chosen to be less than the first index of refraction. The cladding material 30 circumscribes both a fiber core 20 and a second longitudinal axis oriented parallel to but not coincident with the first longitudinal axis.
    • 本文公开了一种偏心芯光纤10,其具有足够大的横截面积以便于易于操作,但被放弃以ev逝模式操作。 本发明的光纤10包括具有第一折射率的光纤芯20。 纤维芯20限定第一纵向轴线。 本发明的光纤10还包括选择为小于第一折射率的第二折射率的光纤包层材料30。 包层材料30限定纤维芯20和与第一纵向轴线平行但不重合的第二纵向轴线。
    • 25. 发明授权
    • Method and apparatus for compressing a light pulse
    • 用于压缩光脉冲的方法和装置
    • US5222161A
    • 1993-06-22
    • US840223
    • 1992-02-24
    • David B. ChangVictor Vali
    • David B. ChangVictor Vali
    • G02F1/01G02F1/035G02F2/00H01S3/00H01S3/10
    • H01S3/0057G02F1/0134G02F1/035G02F2203/26
    • This invention discloses a method and apparatus for shortening the length of a pulse of light. Generally, the method entails altering the index of refraction of an optical medium (14) through which the pulse of light is traveling at an area of the medium (14) where the front end of the pulse of light is located, such that the front end of the pulse of light travels slower than the back end, thus enabling the back end to catch up with the front end in order to shorten the length of the pulse. To accomplish this, it is proposed to generate an electric field across the optical medium (14) by a charge carrying medium (12) positioned relative to the optical medium (14), such that the index of refraction is altered by the electro-optic effect. In addition, it is possible to alter the index of refraction of the optical medium (14) by surrounding the optical medium (14) with a piezoelectric material (20) and applying an electric field to the piezoelectric material (20) such that the piezoelectric material (20) compresses the optical medium (14), thus altering the index of refraction.
    • 本发明公开了一种缩短光脉冲长度的方法和装置。 通常,该方法需要改变在光脉冲的前端所在的介质(14)的区域上行进光的介质(14)的折射率,使得前面 光脉冲的末端比后端的行进速度慢,从而能使后端跟上前端,以缩短脉冲的长度。 为了实现这一点,提出通过相对于光介质(14)定位的电荷传输介质(12)在光学介质(14)之间产生电场,使得折射率被电光 影响。 此外,通过用压电材料(20)围绕光学介质(14)并且向压电材料(20)施加电场,可以改变光学介质(14)的折射率,使得压电 材料(20)压缩光学介质(14),从而改变折射率。
    • 26. 发明授权
    • Apparatus and method for focusing hard X-rays
    • 用于聚焦硬X射线的装置和方法
    • US5210779A
    • 1993-05-11
    • US736153
    • 1991-07-26
    • Victor ValiDavid B. ChangAlbert F. Lawrence
    • Victor ValiDavid B. ChangAlbert F. Lawrence
    • G03F7/20G21K1/06H01L21/027
    • G21K1/06G03F7/70158G03F7/70316G21K2201/062
    • A dislocation-free, composite-substance crystal having a lattice constant which decreases over the length of the crystal (38) convergently focuses beams of hard X-rays or gamma rays (11). A single-substance, dislocation-free crystal (34) collimates diffuse beams of hard X-rays or gamma rays and projects the collimated radiation (11') to the focusing crystal (38). A mask (36) is interposed between the collimating crystal (34) and the focusing crystal (38) causing the collimated radiation (11'') to carry an image of the mask (36). The focusing crystal (38) produces a convergent hard X-ray beam or gamma ray beam (11''') to focus a reduced image of the mask (36) upon the photosensitive layer (41) of a wafer (39). An example of a dislocation-free crystal having a lattice constant which decreases over its length (38) is a dislocation-free silicon-germanium crystal (20) wherein the proportion of germanium to silicon varies over the length of the crystal.
    • 具有在晶体(38)的长度上减小的晶格常数的无位错复合材料晶体会聚地聚焦硬X射线或γ射线(11)的光束。 单体无位错晶体(34)准直了硬X射线或伽马射线的漫射束,并将准直辐射(11')投影到聚焦晶体(38)。 在准直晶体(34)和聚焦晶体(38)之间插入有使准直辐射(11“)携带掩模(36)的图像的掩模(36)。 聚焦晶体(38)产生会聚的硬X射线束或伽马射线束(11“),以将掩模(36)的还原图像聚焦在晶片(39)的感光层(41)上。 具有在其长度上减小的晶格常数(38)的无位错晶体的实例是无位错硅 - 锗晶体(20),其中锗与硅的比例在晶体长度上变化。
    • 28. 发明授权
    • .gamma.-ray detecting device using dislocation-free crystal
    • 伽马射线检测装置使用无位错晶体
    • US5012499A
    • 1991-04-30
    • US423830
    • 1989-10-19
    • Victor ValiDavid B. Chang
    • Victor ValiDavid B. Chang
    • G01N23/20G01T1/00G01T1/36
    • G01T1/36
    • A .gamma.-ray detector that comprises a dislocation-free single crystal. Typical crystals include silicon and germanium, for example. The crystal is surrounded by an active shield that functions as an anticoincidence counter and a .gamma.-ray detector is disposed adjacent the crystal in order to detect received -65 -rays. The .gamma.-ray detector comprises an imaging proportional counter, scintillation counter, or a .gamma.-ray detecting charge coupled device, for example. The .gamma.-ray detector of the present invention is based on the Bormann effect, which is the anomalous transmission of .gamma.-rays through dislocation free single crystals at the Bragg angle. For extended sources, data processing is provided to separate the directional and wavelength dependence of the intensity variation. The .gamma.-ray detector has angular resolution of at least one arc second and may have an effective aperture of several square meters. Reduction in background radiation, which is essentially determined by the crystal thickness, may be made quite large, greater than 10.sup.12. Consequently, the use of the present invention makes it possible to detect a weak .gamma.-ray source even in the presence of a large isotropic background.