会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明专利
    • Method of doping organic semiconductors with quinonediimine derivatives
    • IN382MU2004A
    • 2006-09-29
    • IN382MU2004
    • 2004-03-29
    • NOVALED AG
    • KUEHL OLAFHARTMANN HORSTZEIKA OLAFPFEIFFER MARTINZHENG YOUXUAN
    • H01L51/50A61K31/53C07C251/22C07D339/08C07F5/04C09K11/06H01L21/04H01L21/24H01L29/786H01L29/861H01L31/00H01L35/24H01L51/00H01L51/05H01L51/30H01L51/40H01L51/54H05B33/14
    • Use of an organic mesomer compound (I) as an organic dopant for doping an organic semi conducting matrix material to the variation of the electric characteristics, where (I) is a quinone or its derivative and (I) under smaller or same evaporation conditions, exhibits a evaporability than tetrafluorotetracyanochinondimethane (F4TCNQ), where the molecular doping ratio of dopant to matrix molecule is 1:5-1:1000. Use of an organic mesomer compound (I) as an organic dopant for doping an organic semi conducting matrix material to the variation of the electric characteristics, where (I) is a quinone or its derivative and (I) under smaller or same evaporation conditions, exhibits a evaporability than tetrafluorotetracyanochinondimethane (F4TCNQ), where the molecular doping ratio of dopant to matrix molecule and/or monomer units of a polymer matrix molecule is 1:5-1:1000. Independent claims are also included for: (1) an organic semi conducting material comprising an organic matrix molecule and an organic dopant (I); (2) preparation of organic semi conducting material (comprising an organic matrix molecule and an organic dopant (I)), comprising evaporating the dopant from its precursor compound that releases the dopant during heating and/or irradiating; (3) electronic building element with an organic semi conducting material, which is endowed with an organic dopant for the change of the electronic characteristics of the semi conducting matrix material, where the doping takes place using at least one or more of (I); and (4) a dopant and doping of an organic semi conducting matrix material, where the dopant is a group of organic mesomer quinone or its derivative compounds of formula (1-9), and the dopant on same evaporation conditions, exhibits a smaller evaporability than (F4TCQ). In formula (1): R 1-R 4Cl, CN or (hetero)aryl (optionally substituted with CN, NO 2, CF 3, perfluoroalkyl, SO 3R and/or halo); and A, B1 : NC-CH 2-CN, NC-CF 3or N-Ctriple boundN. In formula (2):R 1-R 8= Cl, F, CN, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, NO, perfluoroalkyl, SO 3R and/or halo). In formula (3): R 1-R 6Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo); and A, B1 : NC-CH 2-CN, NC-CF 3or N-Ctriple boundN. In formula (4): R 1-R 8Cl, F, prefluoroalkyl, CN, NO 2, NO or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo); and A, B1 : NC-CH 2-CN, NC-CF 3or N-Ctriple boundN. In formulae (5-7):R 1-R 6= Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo). In formula (8):R 1-R 12= Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo; where R 1, R 3, R 9und R 12is H and R 2, R 4, R 8, R 10or R 11is Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo). In formula (9): R 1-R 12Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo. [Image] [Image] [Image] [Image].
    • 23. 发明专利
    • PROCESS FOR DOPING ORGANIC SEMICONDUCTORS WITH DERIVATIVES OF DIIMINOQUINONES
    • HK1082839A1
    • 2006-06-16
    • HK05111912
    • 2005-12-22
    • NOVALED AG
    • KUEHL OLAFZEIKA OLAFZHENG YOUXUANHARTMANN HORSTPFEIFFER MARTIN
    • H01L51/50A61K31/53C07C251/22C07D339/08C07F5/04C09K20100101C09K11/06H01L20100101H01L21/04H01L21/24H01L29/786H01L29/861H01L31/00H01L35/24H01L51/00H01L51/05H01L51/30H01L51/40H01L51/54H05B20100101H05B33/14
    • Use of an organic mesomer compound (I) as an organic dopant for doping an organic semi conducting matrix material to the variation of the electric characteristics, where (I) is a quinone or its derivative and (I) under smaller or same evaporation conditions, exhibits a evaporability than tetrafluorotetracyanochinondimethane (F4TCNQ), where the molecular doping ratio of dopant to matrix molecule is 1:5-1:1000. Use of an organic mesomer compound (I) as an organic dopant for doping an organic semi conducting matrix material to the variation of the electric characteristics, where (I) is a quinone or its derivative and (I) under smaller or same evaporation conditions, exhibits a evaporability than tetrafluorotetracyanochinondimethane (F4TCNQ), where the molecular doping ratio of dopant to matrix molecule and/or monomer units of a polymer matrix molecule is 1:5-1:1000. Independent claims are also included for: (1) an organic semi conducting material comprising an organic matrix molecule and an organic dopant (I); (2) preparation of organic semi conducting material (comprising an organic matrix molecule and an organic dopant (I)), comprising evaporating the dopant from its precursor compound that releases the dopant during heating and/or irradiating; (3) electronic building element with an organic semi conducting material, which is endowed with an organic dopant for the change of the electronic characteristics of the semi conducting matrix material, where the doping takes place using at least one or more of (I); and (4) a dopant and doping of an organic semi conducting matrix material, where the dopant is a group of organic mesomer quinone or its derivative compounds of formula (1-9), and the dopant on same evaporation conditions, exhibits a smaller evaporability than (F4TCQ). In formula (1): R 1-R 4Cl, CN or (hetero)aryl (optionally substituted with CN, NO 2, CF 3, perfluoroalkyl, SO 3R and/or halo); and A, B1 : NC-CH 2-CN, NC-CF 3or N-Ctriple boundN. In formula (2):R 1-R 8= Cl, F, CN, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, NO, perfluoroalkyl, SO 3R and/or halo). In formula (3): R 1-R 6Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo); and A, B1 : NC-CH 2-CN, NC-CF 3or N-Ctriple boundN. In formula (4): R 1-R 8Cl, F, prefluoroalkyl, CN, NO 2, NO or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo); and A, B1 : NC-CH 2-CN, NC-CF 3or N-Ctriple boundN. In formulae (5-7):R 1-R 6= Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo). In formula (8):R 1-R 12= Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo; where R 1, R 3, R 9und R 12is H and R 2, R 4, R 8, R 10or R 11is Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo). In formula (9): R 1-R 12Cl, F, CN, NO 2, NO, perfluoroalkyl or (hetero)aryl (optionally substituted with CN, NO 2, perfluoroalkyl, SO 3R and/or halo. [Image] [Image] [Image] [Image].