会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Aqueous-liquid-absorbing agent and its production process
    • 含水液体吸收剂及其制备方法
    • US07981833B2
    • 2011-07-19
    • US10593706
    • 2005-03-11
    • Hiroyuki IkeuchiKazushi ToriiShigeru SakamotoTaku IwamuraSayaka Machida
    • Hiroyuki IkeuchiKazushi ToriiShigeru SakamotoTaku IwamuraSayaka Machida
    • B01J20/26
    • C08J3/245
    • An object of the present invention is to provide an aqueous-liquid-absorbing agent which comprises water-absorbent resin particles as essential components and is suitable for uses in sanitary materials. As a means of achieving this object, an aqueous-liquid-absorbing agent according to the present invention is an aqueous-liquid-absorbing agent comprising water-absorbent resin particles as essential components, wherein the water-absorbent resin particles are obtained by a process including the step of polymerizing a water-soluble ethylenically unsaturated monomer and have a crosslinked structure in their inside; with the aqueous-liquid-absorbing agent exhibiting an absorption rate (FSR) of not less than 0.2 g/g/s, a water absorption capacity (CRC) of 5 to 25 g/g, a saline flow conductivity (SFC) of not less than 400×10−7 cm3·s/g, and a wet porosity of not less than 20%.
    • 本发明的目的是提供一种含水吸收剂,其包含作为必需成分的吸水性树脂粒子,适用于卫生材料。 作为实现该目的的手段,本发明的水性液体吸收剂是以吸水性树脂粒子为必须成分的水性液体吸收剂,其中吸水性树脂粒子是通过 包括聚合水溶性烯键式不饱和单体并在其内部具有交联结构的步骤; 吸水率(FSR)为0.2g / g / s以上,吸水容量(CRC)为5〜25g / g,盐水流动电导率(SFC)不为 小于400×10-7 cm3·s / g,湿气孔率不小于20%。
    • 25. 发明授权
    • Microscope and sample observation method
    • 显微镜和样品观察法
    • US07576910B2
    • 2009-08-18
    • US11979592
    • 2007-11-06
    • Hirotoshi TeradaIkuo ArataMasaharu TokiwaHiroshi TanabeShigeru SakamotoYoshio Isobe
    • Hirotoshi TeradaIkuo ArataMasaharu TokiwaHiroshi TanabeShigeru SakamotoYoshio Isobe
    • G02B21/00
    • G02B21/33G01N21/9501G01N21/956G01N21/95684G02B21/0016G02B21/362
    • For a semiconductor device S as an inspected object, there are provided an image acquisition part 1, an optical system 2 including an objective lens 20, and a solid immersion lens (SIL) 3 movable between an insertion position including an optical axis from the semiconductor device S to the objective lens 20 and a standby position off the optical axis. Then observation is carried out in two control modes consisting of a first mode in which the SIL 3 is located at the standby position and in which focusing and aberration correction are carried out based on a refractive index n0 and a thickness t0 of a substrate of the semiconductor device S, and a second mode in which the SIL 3 is located at the insertion position and in which focusing and aberration correction are carried out based on the refractive index n0 and thickness t0 of the substrate, and a refractive index n1, a thickness d1, and a radius of curvature R1 of SIL 3. This provides a microscope and a sample observation method capable of readily performing observation of the sample necessary for an analysis of microstructure or the like of the semiconductor device.
    • 对于作为检查对象的半导体装置S,提供了图像获取部分1,包括物镜20的光学系统2和在包括来自半导体的光轴的插入位置之间可移动的固体浸没透镜(SIL)3 装置S到物镜20和离开光轴的待机位置。 然后在两个控制模式下进行观察,该两种控制模式由SIL 3位于待机位置的第一模式进行,并且基于第一模式的基板的折射率n0和厚度t0进行聚焦和像差校正 半导体器件S和第二模式,其中SIL 3位于插入位置,并且基于衬底的折射率n0和厚度t0执行聚焦和像差校正,并且折射率n1,厚度 d1和SIL3的曲率半径R1。这提供了能够容易地观察对半导体器件的微结构等的分析所需的样品的显微镜和样品观察方法。
    • 26. 发明申请
    • Fuel Cell
    • 燃料电池
    • US20090191439A1
    • 2009-07-30
    • US12078194
    • 2008-03-27
    • Kouji MatsuokaShigeru Sakamoto
    • Kouji MatsuokaShigeru Sakamoto
    • H01M8/10
    • H01M8/1004H01M4/8605H01M4/8642H01M4/90H01M4/926H01M8/1007H01M8/1226H01M8/1231H01M2008/1095Y02E60/521
    • Oxidation or corrosion of carbon material contained in a cathode due to the reverse current that occurs at the starting of a fuel cell is suppressed. The fuel cell includes a plate-like cell, a separator on one side of the plate-like cell, and a separator on the other side of the plate-like cell. The plate-like cell includes a solid polymer electrolyte membrane, an anode, and a cathode. The anode has a stacked body composed of a catalyst layer and a gas diffusion layer. The cathode has a stacked body composed of a catalyst layer and a gas diffusion layer. The catalyst layer contains a porous carbon material formed with micro pores, which functions as an electric double layer, and an ion-exchange resin. At least part of the porous carbon material supports a catalytic metal such as platinum. The porous carbon material to be used is preferably a carbide-derived carbon. The carbide-derived carbon preferably has micro pores of 1 nm or less.
    • 由于在燃料电池起动时发生的反向电流,阴极中包含的碳材料的氧化或腐蚀被抑制。 燃料电池包括板状电池,板状电池一侧的隔板和板状电池另一侧的隔板。 板状电池包括固体聚合物电解质膜,阳极和阴极。 阳极具有由催化剂层和气体扩散层组成的层叠体。 阴极具有由催化剂层和气体扩散层构成的层叠体。 催化剂层含有形成有作为双电层的微孔的多孔碳材料和离子交换树脂。 至少部分多孔碳材料支持催化金属如铂。 所使用的多孔碳材料优选为碳化物衍生的碳。 碳化物衍生的碳优选具有1nm以下的微孔。
    • 27. 发明申请
    • Water absorbing agent and production method thereof
    • 吸水剂及其制备方法
    • US20090182294A1
    • 2009-07-16
    • US12295495
    • 2007-08-31
    • Hiroyuki IkeuchiShigeru SakamotoSayaka MachidaKatsuyuki Wada
    • Hiroyuki IkeuchiShigeru SakamotoSayaka MachidaKatsuyuki Wada
    • A61F13/53B01J20/26
    • C08F220/00A61L15/60B01J20/267C08F2/14
    • A water absorbing agent includes water absorbent resin particles which are obtained by polymerizing a water-soluble ethylenic unsaturated monomer and which internally include a cross-linked structure, wherein a pressurized void average radius index is 140 or more. As a result, it is possible to provide a water absorbing agent which essentially includes water absorbent resin particles and is suitable for use in a sanitary material. Specifically, it is possible to improve not only a performance for absorbing and retaining aqueous liquid without pressure or under pressure but also (i) a performance for quickly absorbing aqueous liquid with a great help of a performance of a fibrous material, (ii) a performance for dispersing the aqueous liquid after absorbing the aqueous liquid, and (iii) a performance for retaining the aqueous liquid after absorbing the aqueous liquid.
    • 吸水剂包括通过使水溶性烯属不饱和单体聚合并且内部包含交联结构而获得的吸水性树脂颗粒,其中加压空隙平均半径指数为140以上。 结果,可以提供基本上包含吸水性树脂颗粒并适用于卫生材料的吸水剂。 具体而言,不仅可以改善在没有压力或压力的情况下吸收和保留水性液体的性能,还可以(i)在纤维材料的性能的帮助下快速吸收含水液体的性能,(ii) 吸收水性液体后分散水性液体的性能,(iii)在吸收水性液体后保持水性液体的性能。
    • 29. 发明申请
    • Microscope and sample observation method
    • 显微镜和样品观察法
    • US20080074739A1
    • 2008-03-27
    • US11979592
    • 2007-11-06
    • Hirotoshi TeradaIkuo ArataMasaharu TokiwaHiroshi TanabeShigeru SakamotoYoshio Isobe
    • Hirotoshi TeradaIkuo ArataMasaharu TokiwaHiroshi TanabeShigeru SakamotoYoshio Isobe
    • G02B21/00
    • G02B21/33G01N21/9501G01N21/956G01N21/95684G02B21/0016G02B21/362
    • For a semiconductor device S as an inspected object, there are provided an image acquisition part 1, an optical system 2 including an objective lens 20, and a solid immersion lens (SIL) 3 movable between an insertion position including an optical axis from the semiconductor device S to the objective lens 20 and a standby position off the optical axis. Then observation is carried out in two control modes consisting of a first mode in which the SIL 3 is located at the standby position and in which focusing and aberration correction are carried out based on a refractive index n0 and a thickness t0 of a substrate of the semiconductor device S, and a second mode in which the SIL 3 is located at the insertion position and in which focusing and aberration correction are carried out based on the refractive index n0 and thickness t0 of the substrate, and a refractive index n1, a thickness d1, and a radius of curvature R1 of SIL 3. This provides a microscope and a sample observation method capable of readily performing observation of the sample necessary for an analysis of microstructure or the like of the semiconductor device.
    • 对于作为检查对象的半导体装置S,提供了图像获取部分1,包括物镜20的光学系统2和在包括来自半导体的光轴的插入位置之间可移动的固体浸没透镜(SIL)3 装置S到物镜20和离开光轴的待机位置。 然后在两个控制模式下进行观察,该两种控制模式由SIL 3位于待机位置的第一模式组成,并且基于折射率n <0>进行聚焦和像差校正, 半导体器件S的衬底的厚度t 0 <0 和其中SIL 3位于插入位置并且基于折射率执行聚焦和像差校正的第二模式 n 和底层的厚度t 0 <0,折射率n <1,厚度d 1, 以及SIL 3的曲率半径R 1 1。 这提供了能够容易地观察对半导体器件的微细结构等的分析所需的样品的显微镜和样品观察方法。
    • 30. 发明授权
    • Microscope and sample observation method
    • 显微镜和样品观察法
    • US07312921B2
    • 2007-12-25
    • US11333550
    • 2006-01-18
    • Hirotoshi TeradaIkuo ArataMasaharu TokiwaHiroshi TanabeShigeru SakamotoYoshio Isobe
    • Hirotoshi TeradaIkuo ArataMasaharu TokiwaHiroshi TanabeShigeru SakamotoYoshio Isobe
    • G02B21/00
    • G02B21/33G01N21/9501G01N21/956G01N21/95684G02B21/0016G02B21/362
    • For a semiconductor device S as an inspected object, there are provided an image acquisition part 1, an optical system 2 including an objective lens 20, and a solid immersion lens (SIL) 3 movable between an insertion position including an optical axis from the semiconductor device S to the objective lens 20 and a standby position off the optical axis. Then observation is carried out in two control modes consisting of a first mode in which the SIL 3 is located at the standby position and in which focusing and aberration correction are carried out based on a refractive index n0 and a thickness t0 of a substrate of the semiconductor device S, and a second mode in which the SIL 3 is located at the insertion position and in which focusing and aberration correction are carried out based on the refractive index n0 and thickness t0 of the substrate, and a refractive index n1, a thickness d1, and a radius of curvature R1 of SIL 3. This provides a microscope and a sample observation method capable of readily performing observation of the sample necessary for an analysis of microstructure or the like of the semiconductor device.
    • 对于作为检查对象的半导体装置S,提供了图像获取部分1,包括物镜20的光学系统2和在包括来自半导体的光轴的插入位置之间可移动的固体浸没透镜(SIL)3 装置S到物镜20和离开光轴的待机位置。 然后在两个控制模式下进行观察,该两种控制模式由SIL 3位于待机位置的第一模式组成,并且基于折射率n <0>进行聚焦和像差校正, 半导体器件S的衬底的厚度t 0 <0 和其中SIL 3位于插入位置并且基于折射率执行聚焦和像差校正的第二模式 n 和底层的厚度t 0 <0,折射率n <1,厚度d 1, 以及SIL 3的曲率半径R 1 1。 这提供了能够容易地观察对半导体器件的微细结构等的分析所需的样品的显微镜和样品观察方法。