会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明申请
    • DEFECT CLASSIFICATION METHOD AND APPARATUS, AND DEFECT INSPECTION APPARATUS
    • 缺陷分类方法和装置,以及缺陷检查装置
    • US20080075352A1
    • 2008-03-27
    • US11779905
    • 2007-07-19
    • HISAE SHIBUYAShunji MaedaAkira Hamamatsu
    • HISAE SHIBUYAShunji MaedaAkira Hamamatsu
    • G06K9/00
    • G06T7/0004G01N21/9501G01N21/956G06K9/03G06K9/6254G06K9/6282G06T2207/30148
    • A defect classification method to classify defects by using a classifier having a binary tree structure based on features of defects extracted from detected signals acquired from a defect inspection apparatus includes a classifier construction process for constructing the classifier by setting a branch condition including defect classes respectively belonging to groups located on both sides of the branch point, a feature to be used for branching, and a discriminant reference, for each branch point in the structure based on instruction of defect classes and feature data respectively associated therewith beforehand. The process includes a priority order specification process for previously specifying target classification performance of purity and accuracy for each defect class, whole and in worst case, with priority order, and an evaluation process for evaluating whether the specified target classification performance under the branching condition is satisfied and displaying a result of evaluation, every item.
    • 通过使用基于从缺陷检查装置获取的检测信号提取的缺陷的特征的具有二叉树结构的分类器对缺陷进行分类的缺陷分类方法包括:分类器构造处理,用于通过设置包括分别属于的缺陷类的分支条件来构建分类器 基于分支点两侧的组,用于分支的特征,以及基于与预先分别相关联的缺陷类别和特征数据的指示的结构中的每个分支点的判别参考。 该处理包括优先顺序指定处理,用于以优先级顺序预先指定每个缺陷类的全部和最坏情况下的纯度和精度的目标分类性能,以及用于评估分支条件下的指定目标分类性能是否为 满意并显示评估结果,每个项目。
    • 24. 发明授权
    • Error detection method and its system for early detection of errors in a planar or facilities
    • 错误检测方法及其系统,用于早期检测平面或设施中的错误
    • US08630962B2
    • 2014-01-14
    • US13057831
    • 2009-05-29
    • Shunji MaedaHisae Shibuya
    • Shunji MaedaHisae Shibuya
    • G06F15/18
    • G05B23/0254G06K9/00536G06K9/6252G06K9/6272G06K9/6284
    • Provided are a method which permits complete training data and data with added errors, and enables the early and accurate discovery of errors in facilities such as a plant, and a system thereof. To achieve the objectives, (1) the behavior of temporal data is observed over time, and the trace is divided into clusters; (2) the divided cluster groups are modeled in sub spaces, and the discrepancy values are calculated as errors candidates; (3) the training data are used (compare, reference, etc.) for reference to determine the state transitions caused by the changes over time, the environmental changes, the maintenance (parts replacement), and the operation states; and (4) the modeling is a sub space method such as regression analysis or projection distance method of every N data removing N data items, (N=0, 1, 2, . . . ) (for example, when N=1, one error data item is considered to have been added, this data is removed, then the modeling is performed), or a local sub space method. Linear fitting in regression analysis is equivalent to the lowest order regression analysis.
    • 提供了一种允许完整的训练数据和具有附加错误的数据的方法,并且能够及早准确地发现诸如工厂及其系统之类的设施中的错误。 为了实现目标,(1)随时间观察时间数据的行为,并将踪迹分为簇; (2)划分的群集组在子空间中建模,差异值计算为错误候选; (3)使用训练数据(比较,参考等)作为参考,确定随时间变化,环境变化,维护(部件更换)和操作状态引起的状态转换; (4)建模是N次数据去除N个数据项(N = 0,1,2,...)的回归分析或投影距离法的子空间法(例如,当N = 1时, 一个错误数据项被认为已被添加,该数据被删除,然后进行建模)或本地子空间方法。 回归分析中的线性拟合等价于最低阶回归分析。
    • 25. 发明申请
    • Method and apparatus for inspecting a defect of a pattern
    • 检查图案缺陷的方法和装置
    • US20060159330A1
    • 2006-07-20
    • US11328231
    • 2006-01-10
    • Kaoru SakaiShunji MaedaHisae ShibuyaHidetoshi Nishiyama
    • Kaoru SakaiShunji MaedaHisae ShibuyaHidetoshi Nishiyama
    • G06K9/00
    • G06T7/0004G06T7/001G06T2207/30148
    • In a pattern inspection apparatus, influences of pattern brightness variations that is caused in association with, for example, a film thickness difference or a pattern width variation can be reduced, high sensitive pattern inspection can be implemented, and a variety of defects can be detected. Thereby, the pattern inspection apparatus adaptable to a broad range of processing steps is realized. In order to realize this, the pattern inspection apparatus of the present invention performs comparison between images of regions corresponding to patterns formed to be same patterns, thereby determining mismatch portions across the images to be defects. The apparatus includes multiple sensors capable of synchronously acquiring images of shiftable multiple detection systems different from one another, and an image comparator section corresponding thereto. In addition, the apparatus includes means of detecting a statistical offset value from the feature amount to be a defect, thereby enabling the defect to be properly detected even when a brightness difference is occurring in association with film a thickness difference in a wafer.
    • 在图案检查装置中,可以减少与膜厚差或图案宽度变化相关联引起的图案亮度变化的影响,可以实现高灵敏度图案检查,并且可以检测各种缺陷 。 由此,可以实现适应于广泛的处理步骤的图案检查装置。 为了实现这一点,本发明的图案检查装置对与形成为相同图案的图案相对应的区域的图像进行比较,从而确定跨越图像的不匹配部分是缺陷。 该装置包括能够同时获取彼此不同的可移动多个检测系统的图像的多个传感器,以及与其对应的图像比较部。 此外,该装置包括检测从特征量成为缺陷的统计偏移值的装置,从而即使当与膜中的厚度差相关联地发生亮度差时,也能够适当地检测缺陷。
    • 27. 发明申请
    • Malfunction Detection Method and System Thereof
    • 故障检测方法及其系统
    • US20130173218A1
    • 2013-07-04
    • US13702531
    • 2011-05-16
    • Shunji MaedaHisae Shibuya
    • Shunji MaedaHisae Shibuya
    • G06F17/00
    • G06F17/00G05B23/0221G05B23/0224G06Q10/20
    • To allow early sensing of anomalies in a manufacturing plant or other infrastructure (plant), provided is a method that acquires data of runtime status of said plant from a plurality of sensors of said plant, makes a model from training data that corresponds to the regular runtime status of said plant, employs the training data thus modeled in computing a anomaly measure of the data acquired from the sensors, and detects anomalies. In computing the anomaly measure, the anomaly is detected by recursively carrying out: a derivation of a residual error from the training data thus modeled acquired from the plurality of sensors, a removal of a signal having a residual error that is greater than a predetermined value, and a computation of the anomaly measure for the data that is acquired from the plurality of sensors whereupon the signal having the large residual error is removed.
    • 为了允许早期感测制造工厂或其他基础设施(工厂)中的异常,提供了一种从所述设备的多个传感器获取所述设备的运行时状态的数据的方法,从对应于规则的训练数据 所述工厂的运行状态采用如下建模的训练数据来计算从传感器获得的数据的异常测量,并检测异常。 在计算异常测量时,通过递归地执行:从由多个传感器获取的建模的训练数据中导出残差,去除具有大于预定值的残差的信号, 以及从多个传感器获得的数据的异常测量的计算,因此除去具有大残留误差的信号。
    • 28. 发明授权
    • Method and apparatus for inspecting patterns formed on a substrate
    • 用于检查在基板上形成的图案的方法和装置
    • US08467594B2
    • 2013-06-18
    • US12960578
    • 2010-12-06
    • Kaoru SakaiShunji MaedaHisae ShibuyaHidetoshi Nishiyama
    • Kaoru SakaiShunji MaedaHisae ShibuyaHidetoshi Nishiyama
    • G06K9/00G06K9/68
    • G06T7/0004G06T7/001G06T2207/30148
    • In a pattern inspection apparatus, influences of pattern brightness variations that is caused in association with, for example, a film thickness difference or a pattern width variation can be reduced, high sensitive pattern inspection can be implemented, and a variety of defects can be detected. Thereby, the pattern inspection apparatus adaptable to a broad range of processing steps is realized. In order to realize this, the pattern inspection apparatus of the present invention performs comparison between images of regions corresponding to patterns formed to be same patterns, thereby determining mismatch portions across the images to be defects. The apparatus includes multiple sensors capable of synchronously acquiring images of shiftable multiple detection systems different from one another, and an image comparator section corresponding thereto. In addition, the apparatus includes means of detecting a statistical offset value from the feature amount to be a defect, thereby enabling the defect to be properly detected even when a brightness difference is occurring in association with film a thickness difference in a wafer.
    • 在图案检查装置中,可以减少与膜厚差或图案宽度变化相关联引起的图案亮度变化的影响,可以实现高灵敏度图案检查,并且可以检测各种缺陷 。 由此,可以实现适应于广泛的处理步骤的图案检查装置。 为了实现这一点,本发明的图案检查装置对与形成为相同图案的图案相对应的区域的图像进行比较,从而确定跨越图像的不匹配部分是缺陷。 该装置包括能够同时获取彼此不同的可移动多个检测系统的图像的多个传感器,以及与其对应的图像比较部。 此外,该装置包括检测从特征量成为缺陷的统计偏移值的装置,从而即使当与膜中的厚度差相关联地发生亮度差时,也能够适当地检测缺陷。
    • 30. 发明申请
    • ANOMALY DETECTION METHOD AND ANOMALY DETECTION SYSTEM
    • 异常检测方法和异常检测系统
    • US20120316835A1
    • 2012-12-13
    • US13521767
    • 2010-12-16
    • Shunji MaedaHisae Shibuya
    • Shunji MaedaHisae Shibuya
    • G06F15/00
    • G05B23/0232G01D3/08G06K9/00536G06K9/6252
    • A method and system for detecting an anomaly or a fault in equipment such as a plant. A method of representing the state of the equipment is offered. Output signals from multidimensional sensors are treated as subjects. (1) Normal learning data is created. (2) An anomaly measurement is calculated by a subspace classifier or other method. (3) Trajectories of motions of observational data and learning data are evaluated and their errors are calculated by a linear prediction method or the like. (4) The state of the equipment is represented using the anomaly measurement and the trajectories of the motions. (5) A decision is made regarding an anomaly. A case-based reasoning anomaly detection consists of modeling the learning data by the subspace classifier and detecting candidate anomalies based on the distance relationship between the observational data and the subspace. The trajectories of the motions are based on modeling using a linear prediction method.
    • 一种用于检测设备等异常或故障的方法和系统。 提供了一种表示设备状态的方法。 来自多维传感器的输出信号被视为主体。 (1)创建正常学习数据。 (2)通过子空间分类器或其他方法计算异常测量。 (3)评估观测数据和学习数据的运动轨迹,并通过线性预测方法等计算其误差。 (4)使用异常测量和运动轨迹表示设备的状态。 (5)作出关于异常的决定。 基于案例的推理异常检测包括通过子空间分类器对学习数据进行建模,并根据观测数据与子空间之间的距离关系检测候选异常。 运动的轨迹基于使用线性预测方法的建模。