会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明授权
    • Automatic calibration of computer aided diagnosis based on retrospective examination
    • 基于回顾性检查的计算机辅助诊断的自动校准
    • US08331636B2
    • 2012-12-11
    • US12204870
    • 2008-09-05
    • Yoshihisa ShinagawaGerardo Hermosillo Valadez
    • Yoshihisa ShinagawaGerardo Hermosillo Valadez
    • G06K9/00
    • G06T7/0012
    • A method for automatic detection of lesions within a medical image include acquiring medical image data. Regions of suspicion are automatically identified within the medical image data. It is automatically determined whether each identified region of suspicion is of a benign state, is of a suspicious state that requires a biopsy, or is of an indeterminate state that requires subsequent imaging after a particular length of time. When an identified region of suspicion is determined to be of an indeterminate state, the determination is automatically reconsidered in light of a calibration factor that biases the automatic determination towards either a benign state or a suspicious state. The calibration factor may be based on data collected from follow-up examinations that reveal whether a lesion previously characterized as indeterminate was actually a benign or malignant lesion or on additional diagnostic information including prior image data or non-image data.
    • 用于自动检测医学图像内的病变的方法包括获取医学图像数据。 怀疑区域在医学图像数据内自动识别。 自动确定每个识别的怀疑区域是否处于良性状态,是需要活组织检查的可疑状态,或者是在特定时间长度之后需要后续成像的不确定状态。 当识别出的怀疑区域被确定为不确定状态时,根据将自动判定偏向良性状态或可疑状态的校准因素自动重新确定该确定。 校准因子可以基于从随访检查中收集的数据,其揭示先前特征为不确定性的病变实际上是良性或恶性病变,还是包括先前图像数据或非图像数据的附加诊断信息。
    • 24. 发明授权
    • Multi-scale analysis of signal enhancement in breast MRI
    • 乳腺MRI信号增强的多尺度分析
    • US08144953B2
    • 2012-03-27
    • US12206804
    • 2008-09-09
    • Yoshihisa ShinagawaGerardo Hermosillo Valadez
    • Yoshihisa ShinagawaGerardo Hermosillo Valadez
    • G06K9/00
    • G01R33/5601G01R33/5608G06K9/4609G06K2209/05G06T5/50G06T7/0012G06T7/11G06T7/174G06T2207/10088G06T2207/20224G06T2207/30068G06T2207/30096
    • A method for computer assisted lesion detection in magnetic resonance (MR) images includes acquiring dynamic contrast enhanced (DCE) MR images. The images are processed to produce a subtraction image illustrating change in voxel enhancement between the images. A Gaussian low-pass filter is applied to the subtraction image. An elimination mask is created from the filtered subtraction image by removing voxels with enhancement values below a threshold value. The elimination mask is used to remove noise from the subtraction image. One or more regions of suspicion are automatically detected from the noise-removed subtraction image. To produce the subtraction image, DCE-MR images are divided into first and second sub-sets. Positive-signed enhancement values of voxels of the MR images from the first sub-set are added to a combined subtraction image along with absolute values of all enhancement values of voxels of the MR images from the second sub-set.
    • 用于磁共振(MR)图像中计算机辅助病变检测的方法包括采集动态对比度增强(DCE)MR图像。 图像被处理以产生减影图像,说明图像之间的体素增强的变化。 将高斯低通滤波器应用于减法图像。 通过去除具有低于阈值的增强值的体素,从滤波的减法图像创建消除掩模。 消除掩模用于从减影图像中去除噪声。 从噪声消除的减影图像中自动检测一个或多个怀疑区域。 为了产生减法图像,DCE-MR图像被分成第一和第二子集。 来自第一子集的MR图像的体素的正号增强值与来自第二子集的MR图像的体素的所有增强值的绝对值相加到组合减影图像。