会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 27. 发明申请
    • CELL SORTER WITH PIVOTAL SCUPPERS
    • US20220371017A1
    • 2022-11-24
    • US17829321
    • 2022-05-31
    • CYTEK BIOSCIENCES, INC.
    • Glen KruegerDavid VraneKuncheng WangQiuta Gu
    • B01L3/00G01N15/14
    • A compact sorting flow cytometer system is disclosed. The system includes a fluidics system having a flow cell and a deflection chamber in communication with the flow cell to receive drops in a stream of a sample biological fluid with one or more biological cells or particles and selectively deflect the drops in the stream of the sample biological fluid with the one or more biological cells or particles; and a droplet deposition unit (DDU) system in communication with the deflection chamber to receive the selectively deflected drops in the stream of the sample biological fluid with the one or more biological cells or particles into one or more containers. The DDU system includes a case or a housing with an open face surround by edges of the case, the case forming a portion of a containment chamber, the case having a top side opening aligned with the deflection chamber to receive the selectively deflected drops in the stream of the sample biological fluid into one or more containers in the containment chamber, a seal mounted around edges of the case, one or more hinges coupled to a bottom portion of the case, and a door coupled to the one or more hinges to pivot the door about the one or more hinges, the door when closed to press against the seal and close off the containment chamber from an external environment.
      A method for evacuation of air in a containment chamber of a flow cytometer is disclosed. The method includes turning off a return fan in a first tunnel between an air conditioning chamber and a containment chamber; turning on an evacuation fan in a second tunnel between the air conditioning chamber and the containment chamber, the evacuation fan pulling air out of the containment chamber into the air conditioning chamber, opening a valve in an evacuation vent, the evacuation fan pushing air out of the air conditioning chamber through the evacuation vent into the environment; and continuously running the evacuation fan for a predetermined period of time to evacuate air out of the containment chamber.
    • 28. 发明申请
    • INTEGRATED COMPACT CELL SORTER
    • US20220268688A1
    • 2022-08-25
    • US17665480
    • 2022-02-04
    • CYTEK BIOSCIENCES, INC.
    • Glenn KruegerDavid Vrane
    • G01N15/14C12M1/00
    • A flow cytometry or cell sorting system includes a fluidics system and a flow cell. Under pressure, the fluidics system causes sheath and sample biological fluids to flow. The fluidics system can include a gas bubble to remove and eliminate gas bubbles in the sheath fluid; The flow cell communicates with the fluidics system to receive the sheath fluid, wherein a sample biological fluid flows with cells or particles through the flow cell to be surrounded by the sheath fluid; a deflection chamber under the flow cell to receive the drops of sample biological fluid and sheath fluid out of the flow cell, the deflection chamber to selectively deflect one or more of the drops along one or more deflection paths; and a droplet deposition unit (DDU) system in communication with the deflection chamber to receive selectively deflected drops in the stream of the sample biological fluid with the one or more biological cells or particles into one or more containers.
      A flow cytometer or cell sorter system includes a fluidics system and a flow cell. The fluidics system is under pressure to cause a sheath fluid and a sample fluid to flow, the fluidics system including a gas bubble remover eliminating gas bubbles in the sheath fluid; a flow cell coupled in communication with the fluidics system to receive the sheath fluid, wherein a sample fluid flows with cells or particles through the flow cell to be surrounded by the sheath fluid. The flow cell includes a drop drive assembly, a flow cell body, and a cuvette coupled together. The drop drive assembly includes a sample injection tube (SIT) in communication with the fluidics system to receive sample fluid. The flow cell body receives the sample fluid from the sample injection tube and sheath fluid. The flow cell body has a charging port to charge the droplets, the flow cell body having a funnel portion to form a fluid stream of the sample fluid surrounded by the sheath fluid out of an opening; and a cuvette coupled to a base of the flow cell body, the cuvette having a channel to receive the fluid stream of the sample fluid surrounded by the sheath fluid out of the opening, the cuvette being transparent to light and allowing the sample fluid to undergo interrogation in the channel by a plurality of different lasers to determine a plurality of different types of cells or particles therein.
      A flow cell body for a flow cytometer or a cell sorter is provided. The flow cell body comprises the following: a three-dimensional opaque (e.g., black) polymer body having top, bottom, left, right, front, and back sides. The opaque polymer body includes the following: a top side opening into a chamber to receive a drop drive assembly including a sample injection tube (SIT), wherein the chamber has an upper circular cylindrical portion and a lower funnel portion; two or more opposing top side openings receiving threaded inserts to engage two or more threaded bolts to hold a hub of the drop drive assembly coupled to the top side of the flow cell body; a left side port opening into the chamber adjacent a top of the lower funnel portion of the chamber, the left side port opening for fluid flow into or out of the chamber; a right side port opening into the chamber adjacent the top of the lower funnel portion of the chamber, the right side port opening for fluid flow out of or into the chamber; a bottom side opening into the chamber to allow a fluid stream to exit the chamber and the flow cell body; and wherein the lower funnel portion of the chamber forms the fluid stream out of the bottom side opening.
      A subsystem for a flow cytometer or cell sorter system is provided. The subsystem comprises the following: a carriage assembly including a mount having a through hole, wherein the mount is formed to register a nozzle assembly having a nozzle insert with a center nozzle orifice, wherein a gasket is coupled around a perimeter of the nozzle insert, and wherein the mount registers the nozzle assembly such that the center nozzle orifice and the through hole of the mount are concentric along a center axis; the carriage assembly further including a carriage plate statically coupled to the mount such that the carriage plate enables the mount to have vertical movement along the center axis, wherein the mount presses the gasket on the nozzle assembly against a lower side of a cuvette, and wherein the cuvette is formed to have a lower side facing the mount and an upper side coupled to a base of a flow cell body.
      A flow cytometer or cell sorter system is provided. The system comprises the following: a flow cell coupled in communication with the fluidics system to receive the sheath fluid, wherein a sample fluid flows with cells or particles through the flow cell to be surrounded by the sheath fluid, the flow cell including a flow cell body coupled around the drop drive assembly to receive the sample fluid from the sample injection tube, the flow cell body coupled in communication with the fluidics system to receive the sheath fluid, the flow cell body having charging port to charge the droplets, the flow cell body having a funnel portion to form a fluid stream of the sample fluid surrounded by the sheath fluid out of an opening; a cuvette coupled to a base of the flow cell body, the cuvette having a channel to receive the fluid stream of the sample fluid surrounded by the sheath fluid out of the opening, the cuvette being transparent to light and allowing the sample fluid to undergo interrogation in the channel by a plurality of different lasers to determine a plurality of different types of cells or particles therein; and a nozzle assembly selectively engaged with the cuvette, the nozzle assembly having a nozzle and an O-ring around the nozzle selectively pressed against a face of the cuvette around the channel, the nozzle receiving the sample stream from the cuvette and forming sample drops out of the nozzle assembly.
      A nozzle assembly for a cell sorter system is provided. The nozzle assembly comprises the following: a nozzle handle having a body with a gripping end and a nozzle end, the body having a through hole between top and bottom surfaces near the nozzle end with a partial gland in the top surface extending around the through hole, the partial gland having a slot extending out from the through hole to the nozzle end of the nozzle handle; a nozzle insert positioned in a portion of the through hole of the body of the nozzle handle, the nozzle insert having a circular body with a center nozzle orifice concentric with the through hole to flow drops of a sample fluid, and a beveled ring in a top surface extending out from the circular body; a gasket positioned in the partial gland against the beveled ring of the nozzle insert with a portion extending above the top surface of the nozzle insert and the top surface of the nozzle handle, the gasket to provide a seal around the center nozzle orifice; and wherein the slot extending out from the partial gland to the nozzle end facilitates removal of the gasket.
      A flow cytometer or cell sorter system is provided. The system comprises the following: a fluidics system under pressure to cause a sheath fluid and a sample fluid to flow, the fluidics system including a gas bubble remover eliminating gas bubbles in the sheath fluid; and a flow cell coupled in communication with the fluidics system to receive the sheath fluid, wherein a sample fluid flows with cells or particles through the flow cell to be surrounded by the sheath fluid. The flow cell includes the following: a flow cell body coupled in communication with the fluidics system to receive the sheath fluid, the flow cell body having charging port to charge the droplets, the flow cell body having a chamber with a circular cylindrical portion and a funnel portion, the funnel portion to form a fluid stream of the sample fluid surrounded by the sheath fluid out of a bottom side opening; a drop drive assembly coupled to the flow cell body, the drop drive assembly including a glass sample injection tube (SIT) inserted into the chamber of the flow cell body and having a first end located in the funnel portion of the chamber, the glass sample injection tube having a second end coupled in communication with the fluidics system to receive the sample fluid and inject the sample fluid into the funnel portion of the chamber; and a cuvette coupled to a base of the flow cell body, the cuvette having a flow channel adjacent the bottom side opening of the flow cell body, the cuvette to receive the fluid stream of the sample fluid surrounded by the sheath fluid out of the bottom side opening, the cuvette being transparent to light and allowing the sample fluid to undergo interrogation in the flow channel by a plurality of different lasers to determine a plurality of different types of cells or particles in the sample fluid.
      A drop drive assembly for a flow cytometer or cell sorter system is provided. The drop drive assembly comprises the following: an outer metal (piezo) hub having a center opening extending from top to bottom through an extended hollow circular plug; an insulating spacer extended over the extended hollow circular plug up to a flange in a base of the outer metal hub; a hollow piezoelectric cylindrical transducer having a first end coupled over the extended hollow circular plug up to insulating spacer, an inner terminal of the hollow piezoelectric cylindrical transducer coupled to the extended hollow circular plug to form an electrical connection to the outer metal hub; an insulated cylindrical sealing base having an extended hollow circular plug coupled into a second end of the hollow piezoelectric cylindrical transducer, the insulated cylindrical sealing base having a gland ring around a through hole opposite the extended hollow circular plug, the insulated cylindrical sealing base having a groove around an outer cylindrical surface; a hollow cylindrical glass sample injection tube (SIT) having a first end inserted into and through the center opening in the outer metal (piezo) hub, the hollow piezoelectric cylindrical transducer, and the through hole in the insulated cylindrical sealing base; a first sealing O-ring mounted in the groove around in the outer cylindrical surface of the insulated cylindrical sealing base, the first sealing O-ring to engage a cylindrical wall of a cylindrical chamber to seal fluids away from the hollow piezoelectric cylindrical transducer; and a second sealing O-ring mounted in the gland ring in the insulated cylindrical sealing base around the hollow cylindrical glass sample injection tube (SIT) to seal fluids away from the hollow piezoelectric cylindrical transducer.