会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Controller of legged mobile robot
    • 腿式移动机器人控制器
    • US07603234B2
    • 2009-10-13
    • US10562327
    • 2004-06-28
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • G06F19/00
    • B62D57/032
    • The occurrence of a slippage of a robot in operation, following a desired gait, is determined, and the permissible range of a restriction object amount, such as a floor reaction force horizontal component or a floor reaction force moment vertical component to be applied to the robot, is variably set according to a slippage determination result. A provisional motion of a desired gait is determined using a dynamic model, and if the restriction object amount defined by the provisional motion deviates from the permissible range, then the motion of a desired gait is determined by correcting the provisional motion by changing the changing rate of the angular momentum of the robot from the provisional motion so as to limit the restriction object amount to the permissible range, while satisfying a dynamic balance condition.
    • 确定在期望的步态之后操作的机器人的滑动的发生,并且将限制对象量的允许范围,例如地板反作用力水平分量或地板反作用力矩垂直分量施加到 机器人,根据滑动判定结果可变地设定。 使用动态模型确定期望步态的临时运动,并且如果由临时动作限定的限制对象量偏离允许范围,则通过改变变化率来校正临时动作来确定期望步态的运动 的机器人的角动量从临时动作开始,以将限制对象量限制在允许范围内,同时满足动态平衡条件。
    • 22. 发明授权
    • Gait producing device for leg type movable robot
    • 腿式可移动机器人步态生产装置
    • US07496428B2
    • 2009-02-24
    • US10499839
    • 2002-12-26
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • G06F19/00
    • B62D57/032B62D57/02
    • A desired gait is generated so as to satisfy a dynamical equilibrium condition concerning the resultant force of gravity and an inertial force applied to a legged mobile robot 1 using a dynamics model which describes a relationship among at least a horizontal translation movement of a body 24 of the robot 1, a posture varying movement in which the posture of a predetermined part, such as the body 24, of the robot 1 is varied while keeping the center of gravity of the robot 1 substantially unchanged and floor reaction forces generated due to the movements and is defined on the assumption that a total floor reaction force generated due to a combined movement of the movements is represented as a linear coupling of the floor reaction forces associated with the movements. The dynamics model represents movements as a movement of a body material particle or the like and a rotational movement of a flywheel. The desired gait adapted for not only walking but also running or the like can be generated with a reduced amount of calculation.
    • 产生期望的步态,以满足关于合成重力的动力平衡条件和施加到有腿可移动机器人1的惯性力,该动力学模型描述了至少一个主体24的主体24的水平平移运动之间的关系 机器人1,其中机器人1的诸如身体24的预定部分的姿势在保持机器人1的重心基本不变的同时变化并且由于移动而产生的地板反作用力的姿势变化运动 并且假设由于运动的组合运动而产生的总楼面反作用力被表示为与运动相关联的地面反作用力的线性联接。 动力学模型表示作为身体材料颗粒等的运动和飞轮的旋转运动的运动。 可以以减少的计算量生成适于不仅行走而且行驶等的期望步态。
    • 23. 发明授权
    • Gate generating system for mobile robot
    • 移动机器人门生成系统
    • US07319302B2
    • 2008-01-15
    • US10597732
    • 2005-02-16
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • B25J9/08
    • B62D57/032
    • A gait generating system for a mobile robot has n dynamic models and determines a first gait parameter defining a desired gait such that the boundary condition of a gait on a first dynamic model is satisfied. The first gait parameter is corrected step by step by using an m-th dynamic model (m: integer satisfying 2≦m≦n), which is each dynamic model other than the first dynamic model, and an m-th gait parameter that satisfies the boundary condition on the m-th dynamic model is determined. The m-th gait parameter is determined by correcting an object of an (m−1)th gait parameter to be corrected on the basis of the degree of deviation of the gait generated on the m-th dynamic model by using the (m−1)th gait parameter from the boundary condition. A final determined n-th gait parameter and an n-th dynamic model are used to generate a desired gait.
    • 用于移动机器人的步态生成系统具有n个动态模型,并且确定定义期望步态的第一步态参数,使得满足第一动态模型上的步态的边界条件。 第一个步态参数通过使用第m个动态模型(m:满足2 <= m <= n)的整数,其是除第一动态模型之外的每个动态模型,以及第m步态参数 确定满足第m个动态模型的边界条件。 通过使用(m-)步态参数,通过基于在第m动态模型上产生的步态的偏离程度来校正要校正的第(m-1)步态参数的对象来确定第m步态参数, 1)步态参数从边界条件。 使用最终确定的第n步态参数和第n动态模型来产生期望的步态。
    • 24. 发明授权
    • Gait producing device for leg type movable robot
    • 腿式可移动机器人步态生产装置
    • US07308336B2
    • 2007-12-11
    • US10499696
    • 2002-12-26
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • G06F19/00
    • B62D57/032B62D57/02
    • An allowable range of a frictional force component, such as a horizontal component of a translation floor reaction force, applied to a legged mobile robot 1 is set, and a provisional movement with a current time gait of the robot 1 is determined so as to satisfy a condition concerning the allowable range and a dynamical equilibrium condition that a moment produced about a point of application of a provisional desired floor reaction force substantially agrees with a provisional desired floor reaction force moment. The provisional movement is determined by adjusting movements in two movement modes which are different in ratio between the translation floor reaction force and the floor reaction force moment. Based on the final state of the provisional movement, the current time gait is determined by correcting the provisional movement and at least one of the point of application of the provisional desired floor reaction force and the provisional desired floor reaction force moment in such a manner that the current time gait is connected to or brought close to a normal gait. The correction is performed when the frictional force component is unlikely to exceed the allowable range.
    • 设置施加到有腿可动机器人1的平移平面反作用力的水平分量的摩擦力分量的允许范围,并且确定机器人1的当前时间步态的临时运动以满足 关于允许范围和动力学平衡条件的条件,其临时期望的地板反作用力的施加点基本上与临时期望的地板反作用力力矩一致。 暂时移动通过调整平移平台反作用力和地板反作用力力矩之间的比例不同的两种运动模式中的运动来确定。 根据临时运动的最终状态,通过以下方式校正当前时间步态,即以暂时移动以及暂时期望的地面反作用力矩的施加点和至少一个施加临时期望的地面反作用力力矩的至少一个来确定, 当前时间步态连接到或接近正常步态。 当摩擦力分量不太可能超过允许范围时进行校正。
    • 25. 发明申请
    • LEG JOINT ASSIST DEVICE OF LEGGED MOBILE ROBOT
    • LEG联合协助手机移动机器人
    • US20070210739A1
    • 2007-09-13
    • US11573922
    • 2005-08-05
    • Toru TakenakaHiroshi GomiKazushi HamayaKazushi AkimotoKatsushi Tanaka
    • Toru TakenakaHiroshi GomiKazushi HamayaKazushi AkimotoKatsushi Tanaka
    • B25J5/00
    • B62D57/032B25J19/0091
    • In a state wherein a solenoid switching valve in a gas passage in communication with air chambers is closed, an assist device produces an assisting driving force by compression or expansion of a gas as a knee joint (specific joint) of a leg bends or stretches, and applies the produced assisting driving force to the knee joint. In a valve-open state of the solenoid switching valve, no assisting driving force is produced. The solenoid switching valve is constructed of a solenoid switching valve having a self-holding feature, and installed in the gas passage such that a pressure difference between air chambers acts in a valve closing direction of a valve element in a predetermined period during which the solenoid switching valve is closed. This arrangement effectively reduces the power consumption of the solenoid switching valve by a simple construction.
    • 在与气室连通的气体通道中的电磁切换阀关闭的状态下,辅助装置通过作为腿部弯曲或拉伸的膝关节(特定接头)的气体的压缩或膨胀产生辅助驱动力, 并将产生的辅助驱动力施加到膝关节。 在电磁换向阀的阀打开状态下,不产生辅助驱动力。 电磁切换阀由具有自保持特征的电磁切换阀构成,并且安装在气体通道中,使得空气室之间的压力差在阀元件的阀闭合方向作用在预定时间段内,在螺线管 切换阀关闭。 这种布置通过简单的结构有效地降低了电磁开关阀的功耗。
    • 26. 发明申请
    • Gait producing device for moving robot
    • 用于移动机器人的步态生产装置
    • US20070156284A1
    • 2007-07-05
    • US10597931
    • 2005-02-28
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • Toru TakenakaTakashi MatsumotoTakahide Yoshiike
    • G06F19/00
    • B62D57/032
    • By using a first dynamic model of a moving robot 1, a provisional motion, which indicates a provisional value of a desired motion of the robot 1, is created such that a desired value of a floor reaction force moment horizontal component and a permissible range of a translational floor reaction force horizontal component are satisfied on the first dynamic model. The difference between a floor reaction force produced on a second dynamic model, which has a dynamic accuracy that is higher than that of the first dynamic model, by the provisional motion and a floor reaction force produced on the first dynamic model is defined as a floor reaction force error. Based on this floor reaction force error, the provisional motion is corrected on the first dynamic model to generate a desired motion. The desired motion is generated such that the value obtained by adding the floor reaction force error to the floor reaction force generated on the first dynamic model satisfies the aforesaid desired value and permissible range.
    • 通过使用移动机器人1的第一动态模型,创建表示机器人1的期望运动的临时值的临时运动,使得地板反作用力矩水平分量的期望值和允许范围 在第一动态模型上满足平移地板反作用力水平分量。 在第二动态模型上产生的地板反作用力之间的差异,其具有比第一动态模型高的动态精度,通过临时动作产生的地板反作用力和在第一动态模型上产生的地板反作用力的差定义为底板 反作用力误差。 基于该地板反作用力误差,在第一动态模型上校正临时运动以产生期望的运动。 产生期望的运动,使得通过将地板反作用力误差加到在第一动态模型上产生的地板反作用力而获得的值满足上述期望值和容许范围。
    • 29. 发明申请
    • Control device of legged mobile robot
    • 腿式移动机器人控制装置
    • US20060106495A1
    • 2006-05-18
    • US10512231
    • 2003-04-28
    • Toru TakenakaTakashi MatsumotoTakahide YoshiikeKazushi Akimoto
    • Toru TakenakaTakashi MatsumotoTakahide YoshiikeKazushi Akimoto
    • G05B11/58
    • B62D57/032
    • A control device of a legged mobile robot, wherein a state amount error (for example, an error of a vertical position of a body 3), which is a difference between an actual state amount and a state amount of a desired gait related to a translational motion in a predetermined direction (for example, a translational motion in a vertical direction) of a legged mobile robot 1, is determined, and then a desired motion of the desired gait is determined such that the state amount error approaches zero. The desired motion is determined using a dynamic model by additionally inputting a virtual external force determined on the basis of the state amount error to the dynamic model for generating desired gaits. At the same time, a desired floor reaction force of the robot 1 is corrected on the basis of a state amount error of zero, and compliance control is carried out to make the motion and the floor reaction force of the robot 1 follow the desired motion and the desired floor reaction force of the desired gait.
    • 一种有腿式移动机器人的控制装置,其中,状态量误差(例如,主体3的垂直位置的误差)是与实际状态量和期望步态的状态量之间的差异 确定有腿可移动机器人1的预定方向(例如,垂直方向的平移运动)的平移运动,然后确定所需步态的期望运动,使得状态量误差接近零。 使用动态模型通过将基于状态量误差确定的虚拟外力输入到用于产生期望步态的动态模型来确定期望的运动。 同时,基于零的状态量误差来校正机器人1的期望的地板反作用力,并且执行顺从性控制以使机器人1的运动和地面反作用力遵循所需的运动 和期望的步态的期望的地板反作用力。
    • 30. 发明授权
    • Device for absorbing floor-landing shock for legged mobile robot
    • 用于吸收腿式移动机器人地板撞击的装置
    • US06967456B2
    • 2005-11-22
    • US10499117
    • 2002-12-11
    • Toru TakenakaHiroshi GomiKazushi HamayaYoshinari TakemuraTakashi MatsumotoTakahide YoshiikeYoichi NishimuraKazushi AkimotoTaro Yokoyama
    • Toru TakenakaHiroshi GomiKazushi HamayaYoshinari TakemuraTakashi MatsumotoTakahide YoshiikeYoichi NishimuraKazushi AkimotoTaro Yokoyama
    • B25J5/00B25J19/00B62D57/032F16F9/04
    • F16F9/0481B25J19/0091B62D57/032
    • A landing shock absorbing device 18 provided in a foot mechanism 6 of a leg of a robot comprises an inflatable and compressible bag-like member 19 (a variable capacity element) on a bottom face side of the foot mechanism 6. The bag-like member 19 is constructed of an elastic material such as rubber. Air in the atmosphere can flow into and out of the bag-like member 19 by inflow/outflow means 20 provided with a solenoid valve 27 and the like. In a landing state of the foot mechanism 6 and in a state immediately after the foot mechanism shifts from the landing state to a lifting state, the solenoid valve 27 is closed to maintain the bag-like member 19 in a compressed state. Furthermore, during the bag-like member 19 in the inflating state during the lifting state of the foot mechanism 6, by controlling timing when the solenoid valve 27 is switched from a valve opening state to a valve closing state, a height of the bag-like member 19 in a compression direction is controlled to be a height suitable for a gait type of the robot. Thereby, posture stability of the robot can be secured easily while reducing a impact load in the landing motion of the leg of the legged mobile robot, and further, a lightweight configuration can be achieved.
    • 设置在机器人腿部的脚部机构6中的着陆减震装置18包括在脚部机构6的底面侧的可膨胀且可压缩的袋状构件19(可变容量元件)。 袋状构件19由橡胶等弹性材料构成。 大气中的空气可以通过设置有电磁阀27等的流入/流出装置20流入和流出袋状构件19。 在脚部机构6的着陆状态下,并且在脚部机构从着陆状态转移到提升状态之后的状态下,电磁阀27关闭,以将袋状部件19维持在压缩状态。 此外,在脚部机构6的提升状态期间处于充气状态的袋状部件19中,通过控制电磁阀27从开阀状态切换到关闭状态的定时, 压缩方向的板状构件19被控制为适合于步态机器人的高度。 因此,能够容易地确保机器人的姿势稳定性,同时减少有腿可动机器人的腿部的着陆运动中的冲击负荷,并且还可以实现轻量化的构造。