会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Semiconductor processing methods of forming contact openings
    • 形成接触开口的半导体加工方法
    • US06391756B1
    • 2002-05-21
    • US09387040
    • 1999-08-31
    • Pai-Hung PanLuan C. TranTyler A. Lowrey
    • Pai-Hung PanLuan C. TranTyler A. Lowrey
    • H01L2144
    • H01L27/10888H01L21/32051H01L21/76895H01L21/76897H01L27/10855H01L27/10885
    • Methods of forming contact openings, memory circuitry, and dynamic random access memory (DRAM) circuitry are described. In one implementation, an array of word lines and bit lines are formed over a substrate surface and separated by an intervening insulative layer. Conductive portions of the bit lines are outwardly exposed and a layer of material is formed over the substrate and the exposed conductive portions of the bit lines. Selected portions of the layer of material are removed along with portions of the intervening layer sufficient to (a) expose selected areas of the substrate surface and to (b) re-expose conductive portions of the bit lines. Conductive material is subsequently formed to electrically connect exposed substrate areas with associated conductive portions of individual bit lines.
    • 描述形成接触开口,存储器电路和动态随机存取存储器(DRAM)电路的方法。 在一个实施方案中,字线阵列和位线形成在衬底表面上并由中间绝缘层隔开。 位线的导电部分向外露出,并且在衬底和位线的暴露的导电部分上形成一层材料。 材料层的选定部分与中间层的部分一起被移除,足以使(a)暴露衬底表面的选定区域,并且(b)重新暴露位线的导电部分。 随后形成导电材料以将暴露的衬底区域与各个位线的相关联的导电部分电连接。
    • 13. 发明授权
    • Methods of contacting lines and methods of forming an electrical contact in a semiconductor device
    • 接触线的方法和在半导体器件中形成电接触的方法
    • US06790663B2
    • 2004-09-14
    • US10098659
    • 2002-03-12
    • Robert KerrBrian ShirleyLuan C. TranTyler A. Lowrey
    • Robert KerrBrian ShirleyLuan C. TranTyler A. Lowrey
    • H01L214763
    • H01L27/10897H01L21/76895H01L23/535H01L27/10891H01L27/10894H01L2924/0002H01L2924/00
    • Methods of forming contacts, methods of contacting lines, methods of operating integrated circuitry, and related integrated circuitry constructions are described. In one embodiment, a plurality of conductive lines are formed over a substrate and diffusion regions are formed within the substrate elevationally below the lines. The individual diffusion regions are disposed proximate individual conductive line portions and collectively define therewith individual contact pads with which electrical connection is desired. Insulative material is formed over the conductive line portions and diffusion regions, with contact openings being formed therethrough to expose portions of the individual contact pads. Conductive contacts are formed within the contact openings and in electrical connection with the individual contact pads. In a preferred embodiment, the substrate and diffusion regions provide a pn junction which is configured for biasing into a reverse-biased diode configuration. In operation, the pn junction is sufficiently biased to preclude electrical shorting between the conductive line and the substrate for selected magnitudes of electrical current provided through the conductive line and the conductive material forming the conductive contacts.
    • 描述形成触点的方法,接触线的方法,操作集成电路的方法以及相关的集成电路结构。 在一个实施例中,多个导电线形成在衬底之上,扩散区形成在衬底正下方的线下方。 单独的扩散区域设置在各个导电线部分附近,并且与其共同地限定需要电连接的各个接触焊盘。 绝缘材料形成在导电线部分和扩散区域上,其中接触开口穿过其形成以暴露各个接触焊盘的部分。 导电触点形成在接触开口内并与各个接触垫电连接。 在优选实施例中,衬底和扩散区域提供pn结,其被配置为偏置成反向偏置二极管配置。 在操作中,pn结被充分地偏置,以防止导电线和衬底之间的电短路,用于通过导电线和形成导电触点的导电材料提供的选定大小的电流。
    • 16. 发明授权
    • Method for forming out-diffusing a dopant from the doped polysilicon into the N-type and P-type doped portion
    • 用于将掺杂剂从掺杂多晶硅扩散到N型和P型掺杂部分中的方法
    • US06406954B1
    • 2002-06-18
    • US09388559
    • 1999-09-02
    • Shubneesh BatraLuan C. TranTyler A. Lowrey
    • Shubneesh BatraLuan C. TranTyler A. Lowrey
    • H01L218238
    • H01L21/823807H01L21/823814
    • In one aspect, the invention includes a semiconductor processing method of diffusing dopant into both n-type and p-type doped regions of a semiconductive substrate. A semiconductive material is provided. The semiconductive material has a first portion and a second portion. The first portion is a p-type doped portion and the second portion is an n-type doped portion. A mask material is formed over the p-type and n-type doped portions. A first opening is formed to extend through the mask material and to the n-type doped portion. A second opening is formed to extend through the mask material and to the p-type doped portion. Conductively doped polysilicon is formed within the first and second openings. Dopant is out-diffused from the conductively-doped polysilicon and into the n-type and p-type doped portions. In another aspect, the invention includes methods of forming CMOS constructions. In yet another aspect, the invention encompasses methods of forming DRAM constructions.
    • 一方面,本发明包括将掺杂剂扩散到半导体衬底的n型和p型掺杂区域中的半导体处理方法。 提供半导体材料。 半导体材料具有第一部分和第二部分。 第一部分是p型掺杂部分,第二部分是n型掺杂部分。 在p型和n型掺杂部分上形成掩模材料。 形成第一开口以延伸穿过掩模材料和n型掺杂部分。 形成第二开口以延伸穿过掩模材料和p型掺杂部分。 导电掺杂多晶硅形成在第一和第二开口内。 掺杂剂从导电掺杂多晶硅扩散到n型和p型掺杂部分。 另一方面,本发明包括形成CMOS结构的方法。 在另一方面,本发明包括形成DRAM结构的方法。
    • 18. 发明授权
    • Dynamic flash memory cells with ultra thin tunnel oxides
    • 具有超薄隧道氧化物的动态闪存单元
    • US06456535B2
    • 2002-09-24
    • US09882920
    • 2001-06-15
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • G11C1604
    • G11C16/0416
    • Structures and methods involving n-channel flash memories with an ultrathin tunnel oxide thickness, have been provided. Both the write and erase operations are performed by tunneling. According to the teachings of the present invention, the n-channel flash memory cell with thin tunnel oxides will operate on a dynamic basis. The stored data can be refreshed every few seconds as necessary. However, the write and erase operations will however now be orders of magnitude faster than traditional n-channel flash memory and the cell provides a large gain. The present invention further provides structures and methods for n-channel floating gate transistors which avoid n-channel threshold voltage shifts and achieve source side tunneling erase. The n-channel memory cell structure includes a floating gate separated from a channel region by an oxide layer of less than 50 Angstroms (Å). According to the teachings of the present invention, the floating gate is adapted to hold a charge of the order of 10−17 Coulombs at for at least 1.0 second at 85 degrees Celsius. The method includes applying a potential of less than 3.0 Volts across the floating gate oxide which is less than 50 Angstroms, in order to add or remove a charge from a floating gate. The method further includes reading the n-channel memory cell by applying a potential to a control gate of the n-channel memory cell of less than 1.0 Volt.
    • 已经提供了涉及具有超薄隧道氧化物厚度的n通道闪速存储器的结构和方法。 写和擦除操作都通过隧道执行。 根据本发明的教导,具有薄隧道氧化物的n沟道闪存单元将在动态的基础上操作。 存储的数据可以根据需要每隔几秒刷新一次。 然而,写入和擦除操作现在将比传统的n通道快闪存储器快几个数量级,并且电池提供了大的增益。 本发明还提供了可以避免n沟道阈值电压偏移并实现源极侧漏极擦除的n沟道浮栅晶体管的结构和方法。 n沟道存储单元结构包括通过小于50埃(A)的氧化物层与沟道区分离的浮栅。 根据本发明的教导,浮动门适于在85摄氏度下将10-17库仑的电荷持续至少1.0秒。 该方法包括在小于50埃的浮栅上施加小于3.0伏特的电位,以从浮栅中增加或去除电荷。 该方法还包括通过向n沟道存储单元的控制栅极施加小于1.0伏的电位来读取n沟道存储单元。
    • 19. 发明授权
    • Dynamic flash memory cells with ultrathin tunnel oxides
    • 具有超薄隧道氧化物的动态闪存单元
    • US06249460B1
    • 2001-06-19
    • US09513938
    • 2000-02-28
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • G11C1604
    • G11C16/0416
    • Structures and methods involving n-channel flash memories with an ultrathin tunnel oxide thickness, have been provided. Both the write and erase operations are performed by tunneling. According to the teachings of the present invention, the n-channel flash memory cell with thin tunnel oxides will operate on a dynamic basis. The stored data can be refreshed every few seconds as necessary. However, the write and erase operations will however now be orders of magnitude faster than traditional n-channel flash memory and the cell provides a large gain. The present invention further provides structures and methods for n-channel floating gate transistors which avoid n-channel threshold voltage shifts and achieve source side tunneling erase. The n-channel memory cell structure includes a floating gate separated from a channel region by an oxide layer of less than 50 Angstroms (Å). According to the teachings of the present invention, the floating gate is adapted to hold a charge of the order of 10−17 Coulombs at for at least 1.0 second at 85 degrees Celsius. The method includes applying a potential of less than 3.0 Volts across the floating gate oxide which is less than 50 Angstroms, in order to add or remove a charge from a floating gate. The method further includes reading the n-channel memory cell by applying a potential to a control gate of the n-channel memory cell of less than 1.0 Volt.
    • 已经提供了涉及具有超薄隧道氧化物厚度的n通道闪速存储器的结构和方法。 写和擦除操作都通过隧道执行。 根据本发明的教导,具有薄隧道氧化物的n沟道闪存单元将在动态的基础上操作。 存储的数据可以根据需要每隔几秒刷新一次。 然而,写入和擦除操作现在将比传统的n通道快闪存储器快几个数量级,并且电池提供了大的增益。 本发明还提供了可以避免n沟道阈值电压偏移并实现源极侧漏极擦除的n沟道浮栅晶体管的结构和方法。 n沟道存储单元结构包括通过小于50埃(A)的氧化物层与沟道区分离的浮栅。 根据本发明的教导,浮动门适于在85摄氏度下将10-17库仑的电荷持续至少1.0秒。 该方法包括在小于50埃的浮栅上施加小于3.0伏特的电位,以从浮栅中增加或去除电荷。 该方法还包括通过向n沟道存储单元的控制栅极施加小于1.0伏的电位来读取n沟道存储单元。