会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Optical fiber coupler making apparatus made from zirconia and method
    • 由氧化锆制成的光纤耦合器制造装置及方法
    • US06543256B1
    • 2003-04-08
    • US09590166
    • 2000-06-09
    • Toshiki TaruIchiro Tsuchiya
    • Toshiki TaruIchiro Tsuchiya
    • C03B37029
    • C03B37/15G02B6/2835G02B6/2856Y02P40/57
    • In an optical fiber coupler making apparatus which makes an optical fiber coupler by thermally fusing a plurality of optical fibers together by use of a heater and then elongating thus thermally fused part, the heater comprises a heating element which is made of zirconia and which has a slit for containing the optical fibers. The inner face of the heating element is preferentially heated due to a characteristic of its material. Consequently, if optical fibers are contained in the fiber receiving slit, then they can be thermally fused at a sufficiently high temperature in a short period of time, whereby reducing mingling of impurities into the optical fiber coupler. Therefore, the heating element made of zirconia is effective as means for preventing impurities from mingling from the outside thereof. Also, performances of the heating element can be maintained over a long period of time even if the optical fibers are thermally fused at a high temperature. Further, the evaporation of impurities, which may adversely affect characteristics of the optical fiber coupler, hardly occurs from the heating element.
    • 在通过使用加热器将多根光纤热熔合在一起并随后拉伸这样的热熔融部分而制造光纤耦合器的光纤耦合器制造装置中,加热器包括由氧化锆制成的加热元件, 用于容纳光纤的狭缝。 由于其材料的特性,加热元件的内表面被优先加热。 因此,如果在光纤接收狭缝中包含光纤,则可以在短时间内以足够高的温度热熔融,从而减少杂质混入光纤耦合器中。 因此,由氧化锆制成的加热元件作为防止杂质从其外部混合的手段是有效的。 此外,即使光纤在高温下热熔融,也可以长时间保持加热元件的性能。 此外,可能不利地影响光纤耦合器的特性的杂质的蒸发几乎不会从加热元件发生。
    • 13. 发明授权
    • Apparatus and method for measuring chromatic dispersion
    • 用于测量色散的装置和方法
    • US08395762B2
    • 2013-03-12
    • US12647267
    • 2009-12-24
    • Masaaki HiranoToshiki Taru
    • Masaaki HiranoToshiki Taru
    • G01N21/00H04B10/08H04B17/00
    • G01M11/338
    • Highly accurate measurement of chromatic dispersions of a device under test that is an optical component is enabled with a simple structure comprising: propagating pump light having a wavelength λpump and probe light having a wavelength λprobe through the device; calculating the generation efficiency of the idler light with respect to the wavelength λpump by measuring the power of idler light having a wavelength λidler output from the device according to four-wave mixing generated in the device; seeking the frequency difference or wavelength difference between the pump light and the probe light that makes an extremum of generation efficiency of the idler light; calculating phase mismatch among the pump light wavelength having such frequency difference or wavelength difference, the probe light wavelength, and the idler light wavelength; and on the basis of such calculation results, calculating the chromatic dispersion of the device at the wavelength λpump.
    • 通过简单的结构实现了作为光学部件的被测器件的色散的高精度测量,包括:通过器件传播具有波长λpump的泵浦光和具有波长λ探针的探测光; 通过根据在装置中产生的四波混频测量从器件输出的具有波长λidler的惰性光的功率来计算相对于波长λpump的惰轮光的发生效率; 寻求激发光的发光效率极值的泵浦光和探测光之间的频差或波长差; 计算具有这样的频率差或波长差的泵浦光波长,探测光波长和惰轮波长的相位失配; 并且基于这样的计算结果,计算波长λpump处的器件的色散。
    • 17. 发明授权
    • Photonic bandgap fiber
    • 光子带隙光纤
    • US08041170B2
    • 2011-10-18
    • US12393432
    • 2009-02-26
    • Toshiki Taru
    • Toshiki Taru
    • G02B6/02
    • G02B6/02361C03B37/0122C03B2203/42G02B6/02323
    • A photonic bandgap optical fiber and a method of manufacturing said fiber is disclosed. The photonic bandgap fiber comprises a core region surrounded by cladding region. The cladding region includes a background optical material having a first refractive index, and elements of optical material having a second refractive index higher than said first refractive index. The elements are arranges periodically in the background optical material. At the drawing temperature of the fibered, the background optical material has a viscosity lower than the viscosity of the optical material of the elements.
    • 公开了一种光子带隙光纤及其制造方法。 光子带隙光纤包括由包层区域包围的芯区域。 包层区域包括具有第一折射率的背景光学材料和具有高于所述第一折射率的第二折射率的光学材料的元件。 这些元件在背景光学材料中周期性排列。 在纤维的拉伸温度下,背景光学材料的粘度低于元件的光学材料的粘度。
    • 18. 发明授权
    • Optical fiber and fiber grating type filter including the same
    • 光纤和光纤光栅类型的滤光片包括相同的
    • US07203399B2
    • 2007-04-10
    • US10747085
    • 2003-12-30
    • Shinji IshikawaToshiki TaruMasakazu ShigeharaMasaki Ohmura
    • Shinji IshikawaToshiki TaruMasakazu ShigeharaMasaki Ohmura
    • G02B6/00
    • G02B6/03694G02B6/02085G02B6/02119G02B6/03611
    • The present invention relates to an optical fiber having a structure which allows further improvements to be made both in terms of lower reflectance and narrower bandwidth, and to a fiber grating type filter including the optical fiber. The optical fiber applied to the fiber grating type filter comprises a core region extending along a predetermined axis, and a cladding region provided on an outer periphery of the core region. The core region does not contain any photosensitive dopant which contributes to predetermined wavelength light photosensitivity as a glass property, but a part of the cladding region contain such a photosensitive dopant. By means of this composition, it is possible to form a grating, which has a grating plane slanted by a predetermined angle with respect to the optical axis, in a part of the cladding region surrounding the core region.
    • 本发明涉及具有能够进一步改善低反射率和较窄带宽的结构的光纤以及包括该光纤的光纤光栅型滤光器。 施加到光纤光栅型滤光器的光纤包括沿着预定轴线延伸的芯区域和设置在芯区域的外周上的包层区域。 核心区域不含任何有助于作为玻璃性能的预定波长光敏性的光敏掺杂剂,但是包层区域的一部分含有这种光敏掺杂剂。 通过这种组合,可以形成光栅,该光栅具有相对于光轴倾斜预定角度的光栅平面,该光栅平面围绕着核心区域的一部分包层区域。
    • 19. 发明授权
    • All solid photonic bandgap fiber
    • 所有固体光子带隙光纤
    • US08503846B2
    • 2013-08-06
    • US12920037
    • 2009-02-23
    • Toshiki TaruJonathan KnightTim BirksDavid Bird
    • Toshiki TaruJonathan KnightTim BirksDavid Bird
    • G02B6/032
    • G02B6/0238G02B6/02323G02B6/02352
    • All solid photonic bandgap optical fiber comprising a core region and a cladding region is disclosed. The cladding region surrounding the core region includes a background optical material having a first refractive index and elements arranged in a two-dimensional periodic structure. In one embodiment, each of the elements comprises a center part and peripheral part having a higher refractive than the central part. In other embodiments, each element comprises a plurality of rods having a higher refractive index higher than the fist, the rods of each element arranged in a circle or polygon. Light transmission apparatus and methods of using the fiber are also disclosed.
    • 公开了包括芯区域和包层区域的所有固体光子带隙光纤。 围绕芯区域的包层区域包括具有第一折射率的背景光学材料和以二维周期结构排列的元件。 在一个实施例中,每个元件包括具有比中心部分更高的折射率的中心部分和周边部分。 在其他实施例中,每个元件包括多个杆,其折射率高于拳头,每个元件的杆布置成圆形或多边形。 还公开了光传输装置和使用该光纤的方法。
    • 20. 发明授权
    • Apparatus and method for measuring chromatic dispersion
    • 用于测量色散的装置和方法
    • US08351783B2
    • 2013-01-08
    • US12646702
    • 2009-12-23
    • Masaaki HiranoToshiki Taru
    • Masaaki HiranoToshiki Taru
    • H04B10/08
    • G01M11/338
    • The chromatic dispersion of an optical component is measured with high accuracy using a simple set-up, which includes a pump light source, a probe light source, and a measuring means. Pump light having a wavelength λpump and probe light having a wavelength λprobe is propagated through an optical component, with the wavelength λprobe being apart from the wavelength λpump by a given frequency. The generation efficiency of the idler light with respect to the wavelength λpump is calculated by measuring the power of idler light having a wavelength λidler output from the optical component, and by seeking the pump light wavelength for making the generation efficiency a local extreme value, the chromatic dispersion of the optical component is calculated from the result of calculation of phase mismatch among the pump light wavelength having such wavelength as sought, the corresponding probe light wavelength, and the corresponding the idler light wavelength.
    • 使用包括泵浦光源,探针光源和测量装置的简单设置,高精度地测量光学部件的色散。 具有波长λpump的泵浦光和具有波长λ探针的探测光通过光学部件传播,其中波长λ探针与波长λpump分开给定频率。 通过测量从光学部件输出的具有波长λidler的惰轮的功率,并且通过寻找将发光效率设为局部极值的泵浦光波长来计算相对于波长λpump的惰轮光的产生效率, 根据所寻求的波长的泵浦光波长,对应的探测光波长和相应的惰轮波长之间的相位失配的计算结果计算出光学部件的色散。