会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Switchable element
    • 可切换元件
    • US07242604B2
    • 2007-07-10
    • US11329465
    • 2006-01-11
    • Mathias KlaeuiRolf AllenspachPierre-Olivier Jubert
    • Mathias KlaeuiRolf AllenspachPierre-Olivier Jubert
    • C11C7/00
    • G11C11/15
    • A memory element, logic element or sensor element is provided, which element comprises a switchable first magnetic component exhibiting a ferromagnetic or ferrimagnetic behaviour and comprising at least two magnetic domains with different magnetization directions and a domain wall between the magnetic domains. The element has electrodes operable to induce an electric current which at least partially flows through the domain wall with a current density high enough to cause the domain wall to reversibly propagate within the magnetic component. The first magnetic component may belong to a layered system further including a second magnetic component with a fixed magnetization and a non-magnetic spacer layer arranged between the first and second magnetic component. In such a layered system, the electrical resistance may depend on the relative orientation of the magnetization directions of the first and second magnetic component, due to the GMR or TMR effect.
    • 提供存储元件,逻辑元​​件或传感器元件,该元件包括呈现铁磁性或亚铁磁性能的可切换第一磁性部件,并且包括具有不同磁化方向的至少两个磁畴和磁畴之间的畴壁。 元件具有可操作的电极,其电流至少部分地流过畴壁,电流密度足够高以使畴壁在磁性部件内可逆地传播。 第一磁性部件可以属于还包括具有固定磁化的第二磁性部件和布置在第一和第二磁性部件之间的非磁性间隔层的分层系统。 在这种分层系统中,由于GMR或TMR效应,电阻可能取决于第一和第二磁性部件的磁化方向的相对取向。
    • 14. 发明授权
    • Magnetic millipede for ultra high density magnetic storage
    • 磁性千斤顶用于超高密度磁存储
    • US06680808B2
    • 2004-01-20
    • US09798237
    • 2001-03-01
    • Rolf AllenspachGerd K. BinnigWalter HaeberlePeter Vettiger
    • Rolf AllenspachGerd K. BinnigWalter HaeberlePeter Vettiger
    • G11B502
    • G11B5/00B82Y10/00G11B5/012G11B5/255G11B5/488G11B5/4886G11B5/74G11B5/82G11B9/14G11B9/1409G11B9/1418G11B9/1463G11B13/045G11B2005/0002G11B2005/0005G11B2005/0021
    • The present invention relates to computer storage systems which have a tip (24) directed close or in contact to the storage medium (10) by which bit-writing and bit-reading is enforced. It is proposed to use a magnetizable storage medium (10), expose it to an artificial, external magnetic field H coupled externally to the storage medium, and—during bit writing—to concurrently apply heat very locally in bit size dimension in order to let the external magnetic field become locally larger than the (temperature-dependent) coercive field at the location (32) where heat is applied. Further, a two-dimensional array of cantilever tips (24) is advantageously used in an inventional storage system each of which tips serves as a heat source when it is activated by a current flowing through a resistive path within said tip (24) and producing the necessary temperature at the small storage medium location (32) where the bit writing is intended in order to approach the Curie temperature or the compensation temperature of the magnetic material.
    • 本发明涉及具有尖端(24)的计算机存储系统,所述尖端(24)紧密地或与存储介质(10)接触,由此执行位写入和位读取。 建议使用可磁化存储介质(10),将其暴露于外部耦合到存储介质的人造外部磁场H,并且在位写入期间同时以比特尺寸尺寸局部施加热量,以使 外部磁场局部地大于施加热量的位置(32)处的(温度依赖)矫顽场。 此外,悬臂尖端(24)的二维阵列有利地用于本发明的存储系统中,每个尖端在由流过所述尖端(24)内的电阻路径的电流激活时用作热源,并产生 在小存储介质位置(32)处必需的温度,其中位写入旨在接近居里温度或磁性材料的补偿温度。
    • 20. 发明申请
    • Method of manipulating a quantum system comprising a magnetic moment
    • 操纵包括磁矩的量子系统的方法
    • US20050276149A1
    • 2005-12-15
    • US10854390
    • 2004-05-26
    • Rolf AllenspachGian Salis
    • Rolf AllenspachGian Salis
    • G01V3/00G06N99/00G11C11/14H01L29/12H01L29/66
    • H01L29/127B82Y10/00G06N99/002G11C11/14H01L29/66984
    • A method for manipulating a quantum system comprises at least one mobile charge carrier with a magnetic moment. The method comprises the steps or acts of applying magnetic field to the charge carrier. The magnetic is spatially non-homogeneous. The method also comprises bringing the charge carrier into an oscillatory movement along a path. The magnetic field depends on the position of the charge carrier on said path. The oscillatory movement may be caused by electrostatic interaction with gate electrodes. Due to this approach, thus, in a magnetic moment resonance process the conventional oscillating magnetic field is replaced by an oscillating electric field which is locally transformed into a magnetic field by the Coulomb interaction that displaces the charge carrier wave function within an inhomogeneous magnetic field or in and out of a magnetic field.
    • 用于操纵量子系统的方法包括至少一个具有磁矩的移动电荷载体。 该方法包括向电荷载体施加磁场的步骤或动作。 磁性在空间上不均匀。 该方法还包括使电荷载体沿着路径进行振荡运动。 磁场取决于电荷载体在所述路径上的位置。 振荡运动可能是由于与栅电极的静电相互作用引起的。 因此,在这种方法中,在磁矩共振过程中,常规的振荡磁场由通过库仑相互作用而局部转换成磁场的振荡电场代替,这种库仑相互作用将电荷载波函数置于不均匀的磁场内,或 进出磁场。